
SimEvents®

Getting Started Guide

R2013b



How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

SimEvents® Getting Started Guide

© COPYRIGHT 2005–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Revision History
November 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 First printing Revised for Version 1.1 (Release 2006a)
September 2006 Online only Revised for Version 1.2 (Release 2006b)
March 2007 Online only Revised for Version 2.0 (Release 2007a)
September 2007 Online only Revised for Version 2.1 (Release 2007b)
March 2008 Second printing Revised for Version 2.2 (Release 2008a)
October 2008 Online only Revised for Version 2.3 (Release 2008b)
March 2009 Online only Revised for Version 2.4 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.1.1 (Release 2010b)
April 2011 Online only Revised for Version 3.1.2 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.2 (Release 2012b)
March 2013 Online only Revised for Version 4.3 (Release 2013a)
September 2013 Online only Revised for Version 4.3.1 (Release 2013b)





Contents

Introduction

1
SimEvents Product Description . . . . . . . . . . . . . . . . . . . . . 1-2
Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Discrete-Event Simulation in Simulink Models . . . . . . . 1-3

Related Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Information About Related Products . . . . . . . . . . . . . . . . . . 1-5
Limitations on Usage with Related Products . . . . . . . . . . . 1-5

What Is an Entity? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7

What Is an Event? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Overview of Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Relationships Among Events . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Viewing Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9

Run a Sample Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Overview of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Opening the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Examining Entities and Signals in the Model . . . . . . . . . . . 1-11
Key Components of the Model . . . . . . . . . . . . . . . . . . . . . . . 1-13
Running the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15

Building Simple Models with SimEvents
Software

2
Build a Discrete-Event Model . . . . . . . . . . . . . . . . . . . . . . . 2-2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Open a Model and Libraries . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

v



Move Blocks into the Model Window . . . . . . . . . . . . . . . . . . 2-4
Configure Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Connect Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Run the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Insert Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Build a Model Using Model Construction Commands . . . . 2-15

Explore Simulations Using the Debugger and Plots . . . 2-17
Explore the D/D/1 System Using the SimEvents
Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17

Explore the D/D/1 System Using Plots . . . . . . . . . . . . . . . . 2-19
Information About Race Conditions and Random Times . . 2-28

Build a Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29
Lesson 1: Run the Time-Based Model . . . . . . . . . . . . . . . . . 2-30
Lesson 2: Explore the Time-Based Model . . . . . . . . . . . . . . 2-32
Lesson 3: Add Event-Based Behavior . . . . . . . . . . . . . . . . . 2-35
Lesson 4: Run the Hybrid Model . . . . . . . . . . . . . . . . . . . . . 2-40
Event-Based and Time-Based Dynamics in the
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43

Key Concepts in SimEvents Software . . . . . . . . . . . . . . . . 2-44
Meaning of Entities in Different Applications . . . . . . . . . . . 2-44
Entity Ports and Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44
Data and Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45

Create Entities Using Intergeneration Times

3
Role of Entities in SimEvents Models . . . . . . . . . . . . . . . . 3-2
Create Entities in a Model . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Vary the Interpretation of Entities . . . . . . . . . . . . . . . . . . . 3-2
Data and Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Introduction to the Time-Based Entity Generator . . . . . . . 3-3

Specify Intergeneration Times for Entities . . . . . . . . . . . 3-4
Definition of Intergeneration Time . . . . . . . . . . . . . . . . . . . 3-4
Approaches for Determining Intergeneration Time . . . . . . 3-4

vi Contents



How to Specify a Distribution . . . . . . . . . . . . . . . . . . . . . . . 3-5
How to Specify Intergeneration Times from a Signal . . . . . 3-8
Using Random Intergeneration Times in a Queuing
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

Use an Arbitrary Discrete Distribution as Intergeneration
Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10

Use a Step Function as Intergeneration Time . . . . . . . . . . 3-11

Basic Queues and Servers

4
Queues in SimEvents Models . . . . . . . . . . . . . . . . . . . . . . . 4-2
Behavior and Features of Queues . . . . . . . . . . . . . . . . . . . . 4-2
Physical Queues and Logical Queues . . . . . . . . . . . . . . . . . 4-2
Access Queue Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

Servers in SimEvents Models . . . . . . . . . . . . . . . . . . . . . . . 4-4
Behavior and Features of Servers . . . . . . . . . . . . . . . . . . . . 4-4
What Servers Represent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Access Server Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5

Model Basic Queueing Systems . . . . . . . . . . . . . . . . . . . . . 4-6
Constructs Involving Queues and Servers . . . . . . . . . . . . . . 4-6
Example of a Logical Queue . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
Vary the Service Time of a Server . . . . . . . . . . . . . . . . . . . . 4-10

Designing Paths for Entities

5
Role of Paths in SimEvents Models . . . . . . . . . . . . . . . . . . 5-2
Definition of Entity Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Implications of Entity Paths . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Overview of Routing Library for Designing Paths . . . . . . . 5-3

Select Departure Path Using Output Switch . . . . . . . . . 5-5

vii



Role of the Output Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Sample Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Select the First Available Server . . . . . . . . . . . . . . . . . . . . . 5-6
Use an Attribute to Select an Output Port . . . . . . . . . . . . . 5-8

Select Arrival Path Using Input Switch . . . . . . . . . . . . . . 5-10
Role of the Input Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Round-Robin Approach to Choosing Inputs . . . . . . . . . . . . . 5-10

Combine Entity Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
Role of the Path Combiner . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
Sequence Simultaneous Pending Arrivals . . . . . . . . . . . . . . 5-14
Path Combiner Versus Input Switch . . . . . . . . . . . . . . . . . . 5-16

Model a Packet Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
Generate Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Store Packets in Input Buffers . . . . . . . . . . . . . . . . . . . . . . . 5-20
Rout Packets to Their Destinations . . . . . . . . . . . . . . . . . . . 5-21
Connect Multiple Queues to the Output Switch . . . . . . . . . 5-21
Model the Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22

Selected Bibliography

6

Index

viii Contents



1

Introduction

• “SimEvents Product Description” on page 1-2

• “Discrete-Event Simulation in Simulink Models” on page 1-3

• “Related Products” on page 1-5

• “What Is an Entity?” on page 1-7

• “What Is an Event?” on page 1-8

• “Run a Sample Model” on page 1-10



1 Introduction

SimEvents Product Description
Model and simulate discrete-event systems

SimEvents® provides a discrete-event simulation engine and component
library for Simulink®. You can model event-driven communication between
components to analyze and optimize end-to-end latencies, throughput, packet
loss, and other performance characteristics. Libraries of predefined blocks,
such as queues, servers, and switches, enable you to accurately represent
your system and customize routing, processing delays, prioritization, and
other operations.

With SimEvents you can design distributed control systems, hardware
architectures, and sensor and communication networks for aerospace,
automotive, and electronics applications. You can also simulate event-driven
processes, such as the execution of a mission plan or the stages of a
manufacturing process, to determine resource requirements and identify
bottlenecks.

Key Features

• Discrete-event simulation engine for multidomain modeling of complex
systems in Simulink

• Predefined block libraries, including queues, servers, generators, routing,
and entity combiner/splitter blocks

• Entities with custom data attributes for flexible representation of packets,
tasks, and parts

• Built-in statistics aggregation for obtaining delay, throughput, average
queue length, and other metrics

• Library blocks for defining domain-specific constructs, such as
communication channels, messaging protocols, and conveyor belts

• In-model animation for visualizing model operation and debugging

1-2



Discrete-Event Simulation in Simulink® Models

Discrete-Event Simulation in Simulink Models
SimEvents software incorporates discrete-event system modeling into the
Simulink time-based framework, which is suited for modeling continuous-time
and periodic discrete-time systems. In time-based systems, state updates
occur synchronously with time. By contrast, in discrete-event systems, state
transitions depend on asynchronous discrete incidents called events. Some
examples illustrate these differences:

• Suppose you are interested in how long the average airplane waits in
a queue for its turn to use an airport runway. However, you are not
interested in the details of how an airplane moves once it takes off. You can
use discrete-event simulation in which the relevant events include:

- The approach of a new airplane to the runway

- The clearance for takeoff of an airplane in the queue.

• Suppose you are interested in the trajectory of an airplane as it takes
off. You would probably use time-based simulation because finding the
trajectory involves solving differential equations.

• Suppose you are interested in how long the airplanes wait in the queue.
Suppose you also want to model the takeoff in some detail instead of using
a statistical distribution for the duration of runway usage. You can use a
combination of time-based simulation and discrete-event simulation, where:

- The time-based aspect controls details of the takeoff

- The discrete-event aspect controls the queuing behavior

In a Simulink model, you typically construct a discrete-event system by
adding a variety of blocks, such as generators, queues, and servers, from
the SimEvents block library. These blocks are suitable for producing and
processing entities, which are abstractions of discrete items of interest.
Examples of entities are packets within a communication network, planes on
a runway, or trains within a signaling system. Asynchronous events that
correspond to motion and changes in entity attributes through the system
model update the states of the underlying system. Examples of states are
lengths of queues or service time for an entity in a server.

One or more discrete-event systems can coexist with time-based systems
in a Simulink model. This coexistence facilitates the simulation of

1-3



1 Introduction

sophisticated hybrid systems. Using special gateway blocks, you can pass
signals from time-based components/systems to and from discrete-event
components/systems modeled with SimEvents blocks. These gateway blocks
enable time-based and event-based systems to share states. The combination
of time- and event-based modeling facilitates the simulation of large-scale
systems that incorporate smaller subsystems from multiple environments.
An example of a large-scale system might have physical modeling for
continuous-time systems, such as electrical systems, which communicate via
a channel modeled as a discrete-event system. A Simulink model can also
contain a purely discrete-event system with no time-based components when
modeling event-based processes. These systems are common in models that
represent logistic and manufacturing systems.

1-4



Related Products

Related Products

In this section...

“Information About Related Products” on page 1-5

“Limitations on Usage with Related Products” on page 1-5

Information About Related Products
For information about related products, see
http://www.mathworks.com/products/simevents/related.html.

Limitations on Usage with Related Products

Code Generation
SimEvents blocks do not support code generation using the Simulink Coder™
product in version 4.0 (R2011b). In previous versions up until version 3.1.2
(R2010a), SimEvents blocks offered limited code generation support for rapid
simulation. This support will no longer be available for models upgraded to
use the new SimEvents syntax in version 4.0 through the seupdate model
update process. Support for rapid simulation has been removed because
the improvements in normal model simulation performance for SimEvents
models match or surpass the performance of rapid simulation in releases
prior to version 4.0.

Simulation Modes
SimEvents blocks do not support simulation using the Rapid Accelerator,
Accelerator, Processor-in-the-Loop (PIL), or External mode.

Model Reference
SimEvents blocks cannot be in a model that you reference through the Model
block.

1-5

http://www.mathworks.com/products/simevents/related.html


1 Introduction

Function-Call Split Block
SimEvents blocks cannot connect to the Function-Call Split block. Instead, to
split a function-call signal that invokes or originates from a SimEvents block,
use the Signal-Based Event to Function-Call Event block as in “Issue Two
Function Calls in Sequence” in the SimEvents user guide documentation.

1-6



What Is an Entity?

What Is an Entity?
Discrete-event simulations typically involve discrete items of interest. By
definition, these items are called entities in SimEvents software. Entities
can pass through a network of queues, servers, gates, and switches during
a simulation. Entities can carry data, known in SimEvents software as
attributes.

Note Entities are not the same as events. Events are instantaneous discrete
incidents that change a state variable, an output, and/or the occurrence of
other events. See “What Is an Event?” on page 1-8 for details.

Examples of entities in some sample applications are in the table.

Context of Sample Application Entities

Airport with a queue for runway
access

Airplanes waiting for access to
runway

Communication network Packets, frames, or messages to
transmit

Bank of elevators People traveling in elevators

Conveyor belt for assembling parts Parts to assemble

Computer operating system Computational tasks or jobs

A graphical block can represent a component that processes entities, but
entities themselves do not have a graphical representation. When you design
and analyze your discrete-event simulation, you can choose to focus on:

• The entities themselves. For example, what is the average waiting time for
a series of entities entering a queue?

• The processes that entities undergo. For example, which step in a
multiple-step process (that entities undergo) is most susceptible to failure?

1-7



1 Introduction

What Is an Event?

In this section...

“Overview of Events” on page 1-8

“Relationships Among Events” on page 1-8

“Viewing Events” on page 1-9

Overview of Events
In a discrete-event simulation, an event is an instantaneous discrete incident
that changes a state variable, an output, and/or the occurrence of other
events. Examples of events that can occur during simulation of a SimEvents
model are:

• The advancement of an entity from one block to another.

• The completion of service on an entity in a server.

• A zero crossing of a signal connected to a block that you configure to react
to zero crossings. These events are also called trigger edges.

• A function call, which is a discrete invocation request carried from block to
block by a special signal called a function-call signal.

For a full list of supported events and more details on them, see “Events in
SimEvents Models”.

Relationships Among Events
Events in a simulation can depend on each other:

• One event can be the sole cause of another event. For example, the arrival
of the first entity in a queue causes the queue length to change from 0 to 1.

• One event can enable another event to occur, but only under certain
conditions. For example, the completion of service on an entity makes the
entity ready to depart from the server. However, the departure occurs only
if the subsequent block is able to accept the arrival of that entity. In this
case, one event makes another event possible, but does not solely cause it.

1-8



What Is an Event?

Events that occur at the same value of the simulation clock are called
simultaneous events, even if the application processes sequentially. When
simultaneous events are not causally related to each other, the processing
sequence can significantly affect the simulation behavior. For an example,
see “Choose Values for Event Priorities”. For more details, see “Processing
Sequence for Simultaneous Events” online.

Viewing Events
Events do not have a graphical representation. You can infer their occurrence
by observing their consequences, by using the Instantaneous Event Counting
Scope block, or by using the debugger. For details, see “Observe Events”, “”, or
“View the Event Calendar” online.

1-9



1 Introduction

Run a Sample Model

In this section...

“Overview of the Model” on page 1-10

“Opening the Model” on page 1-10

“Examining Entities and Signals in the Model” on page 1-11

“Key Components of the Model” on page 1-13

“Running the Simulation” on page 1-15

Overview of the Model
One way to become familiar with the basics of SimEvents models and the
way they work is to examine and run a previously built model. This section
describes a SimEvents example model. The model simulates a technique for
dynamically adjusting the energy consumption of a microcontroller based
on the workload, without compromising quality of service. Changes in the
workload can occur as discrete events.

Opening the Model
To open this example, enter showdemo('sedemo_DVS_model') in the
MATLAB® Command Window.

1-10



Run a Sample Model

Examining Entities and Signals in the Model
This section describes the different kinds of ports and lines that appear in
the sedemo_DVS_model model. Compared to signal ports, entity ports look
different and represent a different concept.

Entity Ports and Connections
Some blocks in this model can process entities, which the “What Is an Entity?”
on page 1-7 section discusses.

The FIFO Queue block and the Start Timer block, which are part of the
SimEvents library set, process entities in this model. Each of these blocks has
an entity input port and an entity output port. The following figure shows
the entity output port of the FIFO Queue block and the entity input port of
the Start Timer block.

1-11



1 Introduction

��������	��
���	�����


������
	����
	��

������
����
	��

Entity connection lines represent relationships among two blocks (or among
their entity ports) by indicating a path by which an entity can:

• Depart from one block

• Arrive simultaneously at a subsequent block

The preceding figure shows the connection line:

• From OUT, the entity output port of the FIFO Queue block

• To IN, the entity input port of the Start Timer block

When you run the simulation, entities that depart from the OUT port arrive
simultaneously at the IN port.

By convention, entity ports use labels with words in uppercase letters, such
as IN and OUT.

You cannot branch an entity connection line. If your application requires an
entity to arrive at multiple blocks, use the Replicate block to create copies
of the entity.

Signals and Signal Ports
Some blocks in this model can process signals. Signals represent numerical
quantities defined at all times during a simulation, not only at a discrete

1-12



Run a Sample Model

set of times. Signals appear as connection lines between signal ports of two
blocks. The following figure shows that the Start Timer block has not only
an entity output port but also a signal output port. The signal output port
connects to the Random Service Time subsystem.

������
�	��
���	�
���


������
	����
	��

������������	��

In a discrete-event system, the signal input port coming into a block changes
to an empty arrow when you perform update diagram:

Key Components of the Model
The sedemo_DVS_model model uses event-based blocks to simulate the
workload of the microcontroller:

• At random times, the Time-Based Entity Generator block generates an
entity that represents a job for the microcontroller.

1-13



1 Introduction

• The FIFO Queue block stores jobs that the microcontroller cannot process
immediately.

• The Single Server block models the processing of a job by the
microcontroller.

This block can process at most one job at a time and thus limits the
availability of the microcontroller to process new jobs. While a job is in this
block, other jobs remain in the FIFO Queue block.

• The Start Timer and Read Timer blocks work together to compute the time
that each job spends in the server. The result of the computation is the et
output signal from the Read Timer block.

• The Entity Sink block absorbs jobs that have completed their processing.

• Between the blocks where event-based signals transition to signal-based
signals, Event to Timed Signal block performs the conversion.

Important discrete events in this model are the generation of a new job and
the completion of processing of a job.

The model also includes blocks that simulate a dynamic voltage scaling (DVS)
controller that adjusts the input voltage depending on the workload of the
microcontroller. The idea is to minimize the average cost per job, where the
cost takes into account both energy consumption and quality of service. For
more information about the cost and the optimization technique, see Modeling
Load Within a Dynamic Voltage Scaling Application online.

Appearance of Entities
Entities do not appear explicitly in the model window. However, you can
gather information about entities using plots, signals, and entity-related
features in the debugger. See these sections for more information:

• “Synchronize Service Start Times with the Clock” online

• “Select the First Available Server” on page 5-6

• “Plot the Queue-Length Signal” on page 2-21, which is part of the larger
example “Build a Discrete-Event Model” on page 2-2

• “Inspect Entities” online

1-14



Run a Sample Model

Running the Simulation
To run the sedemo_DVS_model simulation, choose Simulation > Run from
the model window. A Figure window opens with a dynamic plot showing
how the DVS controller varies the voltage during the simulation to reduce
the average cost per job. A triangle marker moves to indicate the current
voltage and corresponding cost.

1-15



1 Introduction

1-16



2

Building Simple Models
with SimEvents Software

• “Build a Discrete-Event Model” on page 2-2

• “Explore Simulations Using the Debugger and Plots” on page 2-17

• “Build a Hybrid Model” on page 2-29

• “Key Concepts in SimEvents Software” on page 2-44



2 Building Simple Models with SimEvents® Software

Build a Discrete-Event Model

In this section...

“Overview” on page 2-2

“Open a Model and Libraries” on page 2-3

“Move Blocks into the Model Window” on page 2-4

“Configure Blocks” on page 2-9

“Connect Blocks” on page 2-13

“Run the Simulation” on page 2-13

“Insert Blocks” on page 2-15

“Build a Model Using Model Construction Commands” on page 2-15

Overview
This section describes how to build a new model representing a discrete-event
system. The system is a simple queuing system in which “customers” —
entities — arrive at a fixed deterministic rate, wait in a queue, and advance
to a server that operates at a fixed deterministic rate. This type of system is
known as a D/D/1 queuing system in queuing notation. The notation indicates
a deterministic arrival rate, a deterministic service rate, and a single server.

Using the example system, this section shows you how to perform basic
model-building tasks, such as:

• Adding blocks to models

• Configuring blocks using their parameter dialog boxes

The next section, “Explore Simulations Using the Debugger and Plots” on
page 2-17, uses the same D/D/1 system to illustrate techniques more specific
to discrete-event simulations, such as:

• Using the SimEvents debugger to examine the state of a server

• Using plots to understand simulation behavior, including plots that show
multiple values at a fixed time

2-2



Build a Discrete-Event Model

To skip the model-building steps and open a completed version of the example
model, enter simeventsdocex('doc_dd1') in the MATLAB Command
Window. Save the model in your working folder as dd1.

Note When you later create your own models, use the conversion blocks from
the Gateways library (gateway blocks) to convert signals and function-calls
from signal-based to event-based and vice versa.

Open a Model and Libraries
The first steps in building a model are to set up your environment, open a new
model window, and open the libraries containing blocks.

Open a New Model Window
On the Home tab, select File > New > Model f. An empty model window
opens.

To name the model and save it as a file, select File > Save from the model
window’s menu. Save the model in your working folder under the file name
dd1.

Open SimEvents Libraries
In the MATLAB Command Window, enter

simeventslib

The main SimEvents library window appears. This window contains an icon
for each SimEvents library. To open a library and view the blocks it contains,
double-click the icon that represents that library.

2-3



2 Building Simple Models with SimEvents® Software

Open Simulink Libraries
In the MATLAB Command Window, enter

simulink

The Simulink Library Browser opens, using a tree structure to display the
available libraries and blocks. To view the blocks in a library listed in the left
pane, select the library name, and the list of blocks appears in the right pane.
The Library Browser provides access not only to Simulink blocks but also to
SimEvents blocks. For details about the Library Browser, see “Simulink
Library Browser” in the Simulink documentation.

Move Blocks into the Model Window
To move blocks from libraries into the model window, follow these steps:

2-4



Build a Discrete-Event Model

1 In the main SimEvents library window, double-click the Generators icon
to open the Generators library. Then double-click the Entity Generators
icon to open the Entity Generators sublibrary.

2 Drag the Time-Based Entity Generator block from the library into the
model window.

This might cause an informational dialog box to open, with a brief
description of the difference between entities and events.

2-5



2 Building Simple Models with SimEvents® Software

3 In the main SimEvents library window, double-click the Queues icon to
open the Queues library.

2-6



Build a Discrete-Event Model

4 Drag the FIFO Queue block from the library into the model window.

5 In the main SimEvents library window, double-click the Servers icon to
open the Servers library.

2-7



2 Building Simple Models with SimEvents® Software

6 Drag the Single Server block from the library into the model window.

7 In the main SimEvents library window, double-click the SimEvents Sinks
icon to open the SimEvents Sinks library.

8 Drag the Signal Scope block and the Entity Sink block from the library
into the model window.

As a result, the model window looks like the following figure. The model
window contains blocks that represent the key processes in the simulation:
blocks that generate entities, store entities in a queue, serve entities, and
create a plot showing relevant data.

2-8



Build a Discrete-Event Model

Configure Blocks
Configuring the blocks in dd1 means setting their parameters appropriately
to represent the system being modeled. Each block has a dialog box that
enables you to specify parameters for the block. Default parameter values
might or might not be appropriate, depending on what you are modeling.

View Parameter Values
Two important parameters in this D/D/1 queuing system are the arrival rate
and service rate. The reciprocals of these rates are the duration between
successive entities and the duration of service for each entity. To examine
these durations, do the following:

1 Double-click the Time-Based Entity Generator block to open its dialog box.
Observe that the Distribution parameter is set to Constant and that the
Period parameter is set to 1. This means that the block generates a new
entity every second.

2-9



2 Building Simple Models with SimEvents® Software

2 Double-click the Single Server block to open its dialog box. Observe that
the Service time parameter is set to 1. This means that the server spends
one second processing each entity that arrives at the block.

2-10



Build a Discrete-Event Model

3 Click Cancel in both dialog boxes to dismiss them without changing any
parameters.

The Period and Service time parameters have the same value, which
means that the server completes an entity’s service at exactly the same time
that a new entity is being created.

Change Parameter Values
Configure blocks to create a plot that shows when each entity departs from the
server, and to make the queue have an infinite capacity. Do this as follows:

1 Double-click the Single Server block to open its dialog box.

2 Click the Statistics tab to view parameters related to the statistical
reporting of the block.

3 Select the Number of entities departed check box.

2-11



2 Building Simple Models with SimEvents® Software

Then click OK. The Single Server block acquires a signal output port
labeled #d. During the simulation, the block will produce an output signal
at this #d port; the signal’s value is the running count of entities that have
completed their service and departed from the server.

4 Double-click the FIFO Queue block to open its dialog box.

5 Set the Capacity parameter to Inf and click OK.

2-12



Build a Discrete-Event Model

Connect Blocks
Now that the model window for dd1 contains blocks that represent the key
processes, connect the blocks as shown in the following graphic.

To connect blocks, do one of the following:

• With the mouse, drag from the output port of the source block to the input
port of the destination block.

• Select the source block. Ctrl+click the destination block.

In both cases, SimEvents connects the source block to the destination block. If
necessary, the software also routes the connecting line around intervening
blocks or lines.

Note The following section about inserting blocks is general information
that does not apply to the dd1 model. When you have connected the blocks
as shown in the preceding graphic, the dd1 model is ready for simulation as
described in “Run the Simulation” on page 2-13.

Run the Simulation
Save the dd1 model you have created. Then start the simulation by choosing
Simulation > Run from the model window’s menu.

Resolve Solver Warnings
When you first simulate the model in this example, you will see warning
messages in the MATLAB Command Window about continuous states and
the maximum step size. These messages appear because certain default

2-13



2 Building Simple Models with SimEvents® Software

parameters for a Simulink model are inappropriate for this particular
example model, which is completely event-based and contains no blocks with
continuous states. The application overrides the inappropriate parameters
and alerts you to that fact.

If you want to prevent these warnings when you simulate event-based models
in the future, you need to set the solver type and step size parameters to
appropriate values. To do this, with your model open in the model editor,
open Simulation > Configuration Parameters > Solver. Under the Solver
options section, for the Type: parameter select the Variable-step option
in the drop-down list. For the Solver: parameter, select Discrete in the
drop-down list and in the field for the Max step size: parameter, type inf.
Click OK and save your model.

Results of the Simulation
When the simulation runs, the Signal Scope block opens a window containing
a plot. The horizontal axis represents the times at which entities depart from
the server, while the vertical axis represents the total number of entities
that have departed from the server.

After an entity departs from the Single Server block, the block updates its
output signal at the #d port. The updated values are reflected in the plot
and highlighted with plotting markers. From the plot, you can make these
observations:

2-14



Build a Discrete-Event Model

• Until T=1, no entities depart from the server. This is because it takes one
second for the server to process the first entity.

• Starting at T=1, the plot is a stairstep plot. The stairs have height 1
because the server processes one entity at a time, so entities depart one at
a time. The stairs have width equal to the constant service time, which is
one second.

Insert Blocks
You can insert a block in an existing line, if the block that you want to insert:

• Has only one input and one output port.

• Has connection port types (i.e. entity ports or signal ports) that correspond
with the data on the existing line. For example, in an existing entity line,
you can insert only a block that accepts and outputs entities. You cannot
insert a block that accepts and outputs event-based signals.

To insert a block in a line:

1 Drag the block over the line.

2 Release the mouse button. SimEvents inserts the block in the line.

Build a Model Using Model Construction Commands
This example shows how to use model construction commands to add blocks
to a model and connect them.

Suppose you want to add a Time-Based Entity Generator block and a FIFO
Queue block to a model and connect them:

This procedure shows you how to add and position the two blocks in a model,
for example, MyModel.

2-15



2 Building Simple Models with SimEvents® Software

Add the Time-Based Entity Generator block and position it.

add_block(['simeventslib/Generators/Entity Generators/', ...

'Time-Based Entity Generator'], 'MyModel/Time-Based Entity Generator');

set_param('MyModel/Time-Based Entity Generator','position',[65 63 150 117]);

The position parameter specifies the top left (x,y) and lower right (x+block
width, y+block height) corners of the block.

Add the FIFO Queue block and position it.

add_block('simeventslib/Queues/FIFO Queue','MyModel/FIFO Queue');

set_param('MyModel/FIFO Queue','position',[195 63 280 117]);

Get the port handles for each block.

Block1PortHandles = get_param('MyModel/Time-Based Entity Generator','PortHandles');

Block2PortHandles = get_param('MyModel/FIFO Queue','PortHandles');

Block port handles are structure variables that contain the elements LConn
and RConn. These elements represent the block left and right connection ports.

Connect the blocks.

add_line('MyModel',Block1PortHandles.RConn(1), Block2PortHandles.LConn(1),'autorouting','on');

Port indices, such as RConn(1), correspond to the top-down order of connection
ports when you look at the block in the Simulink Editor. The autorouting
feature routes lines around any intervening blocks or other lines, as needed.

Note If you want to connect blocks that are inside a subsystem, use the full
path to the subsystem as the first argument of the add_line function:

add_line('MyModel/MySubsystem',Block1PortHandles.RConn(1),... )

2-16



Explore Simulations Using the Debugger and Plots

Explore Simulations Using the Debugger and Plots

In this section...

“Explore the D/D/1 System Using the SimEvents Debugger” on page 2-17

“Explore the D/D/1 System Using Plots” on page 2-19

“Information About Race Conditions and Random Times” on page 2-28

Explore the D/D/1 System Using the SimEvents
Debugger
The plot in “Run the Simulation” on page 2-13 indicates how many entities
have departed from the server, but does not address the following question: Is
any entity still in the server at the conclusion of the simulation? To answer
the question, you can use the SimEvents debugger, as described in this
section. Using the debugger involves running the simulation in a special
debugging mode that lets you suspend a simulation at each step or breakpoint
and query simulation behavior. Using the debugger does not require you to
change the model. The topics in this section are as follows:

• “Start the Debugger” on page 2-17

• “Run the Simulation” on page 2-18

• “Query the Server Block” on page 2-18

• “End the Simulation” on page 2-19

• “For Further Information” on page 2-19

Start the Debugger
To open a completed version of the example model for this tutorial, enter
simeventsdocex('doc_dd1') in the MATLAB Command Window. Save the
model in your working folder as dd1.

To start simulating the current system in debugging mode, enter this
command at the MATLAB command prompt:

sedebug(bdroot)

2-17



2 Building Simple Models with SimEvents® Software

The output in the MATLAB Command Window indicates that the debugger is
active. The output also includes hyperlinks to information sources.

*** SimEvents Debugger ***

Functions | Help | Watch Video Tutorial

%==============================================================================%

Initializing Model dd1

sedebug>>

The sedebug>> notation is the debugger prompt, where you enter commands.

Run the Simulation
The simulation has initialized but does not proceed. In debugging mode, you
indicate to the debugger when to proceed through the simulation and how far
to proceed before returning control to you. The purpose of this example is to
find out whether an entity is in the server when the simulation ends. To
continue the simulation until it ends, enter this command at the sedebug>>
prompt:

cont

The Command Window displays a long series of messages that indicate what
is happening during the simulation. The end of the output indicates that the
debugger has suspended the simulation just before the end:

Hit built-in breakpoint for the end of simulation.

Use 'cont' to end the simulation or any other function to inspect final states of the

system.

%==============================================================================%

Terminating Model dd1

To understand the long series of messages, see “Simulation Log in the
Debugger”.

Query the Server Block
The debugger has suspended the simulation just before the end and the
sedebug>> prompt indicates that you can still enter debugging commands.

2-18



Explore Simulations Using the Debugger and Plots

In this way, you have an opportunity to inspect the final states of blocks or
other aspects of the simulation. To get information about the Single Server
block, enter this command:

blkinfo('dd1/Single Server')

The output shows the state of the Single Server block at the current time,
T=10. The last two rows of the output represent a table that lists entities in
the block. The table has one row because the server is currently storing one
entity. The entity has a unique identifier, en11, and is currently in service.
This output affirmatively answers the question of whether an entity is in
the server when the simulation ends.

�������	��
�������
����������

�
���
����
���
�������

End the Simulation
The simulation is still suspended just before the end. To proceed, enter this
command:

cont

The simulation ends, the debugging session ends, and the MATLAB command
prompt returns.

For Further Information
For additional information about the SimEvents debugger, see “Debug
Simulation”.

Explore the D/D/1 System Using Plots
The dd1 model that you created in “Build a Discrete-Event Model” on page
2-2 plots the number of entities that depart from the server. This section

2-19



2 Building Simple Models with SimEvents® Software

modifies the model to plot other quantities that can reveal aspects of the
simulation. The topics are as follows:

• “Enable the Queue-Length Signal” on page 2-20

• “Plot the Queue-Length Signal” on page 2-21

• “Simulate with Different Intergeneration Times” on page 2-21

• “View Waiting Times and Utilization” on page 2-23

• “Observations from Plots” on page 2-25

To open a completed version of the example model for this tutorial, enter
simeventsdocex('doc_dd1') in the MATLAB Command Window. Before
modifying the model, save it with a different file name.

Enable the Queue-Length Signal
The FIFO Queue block can report the queue length, that is, the number of
entities it stores at a given time during the simulation. To configure the FIFO
Queue block to report its queue length, do the following:

1 Double-click the FIFO Queue block to open its dialog box. Click the
Statistics tab to view parameters related to the statistical reporting of
the block.

2 Set the Number of entities in queue parameter to On and click OK. This
causes the block to have a signal output port for the queue-length signal.
The port label is #n.

2-20



Explore Simulations Using the Debugger and Plots

Plot the Queue-Length Signal
The model already contains a Signal Scope block for plotting the entity count
signal. To add another Signal Scope block for plotting the queue-length signal
(enabled above), follow these steps:

1 In the main SimEvents library window, double-click the SimEvents Sinks
icon to open the SimEvents Sinks library.

2 Drag the Signal Scope block from the library into the model window. The
block automatically assumes a unique block name, Signal Scope1, to avoid
a conflict with the existing Signal Scope block in the model.

3 Connect the #n signal output port of the FIFO Queue block to the in signal
input port of the Signal Scope1 block by dragging the mouse pointer from
one port to the other. The model now looks like the following figure.

Simulate with Different Intergeneration Times
By changing the intergeneration time (that is, the reciprocal of the entity
arrival rate) in the Time-Based Entity Generator block, you can see when
entities accumulate in the queue. Try this procedure:

Note If you skipped the earlier model-building steps, you can
open a completed version of the model for this section by entering
simeventsdocex('doc_dd1_blockage') in the MATLAB Command Window.

1 Double-click the Time-Based Entity Generator block to open its dialog box,
set the Period parameter to 0.85, and click OK. This causes entities to

2-21



2 Building Simple Models with SimEvents® Software

arrive somewhat faster than the Single Server block can process them. As
a result, the queue is not always empty.

2 Save and run the simulation. The plot whose title bar is labeled Signal
Scope1 represents the queue length. The figure below explains some of the
points on the plot. The vertical range on the plot has been modified to fit
the data better.

������
�����
�
�������	�
��
�


��������
����
��	����
�
�������
�
�	�
��
���

��
�
�����
�
�������	�
��
�
�

������������
�
���������������
�


��
�
�����
�
��������
��
�
�

������
�����
�����
�
�����
�


3 Reopen the Time-Based Entity Generator block’s dialog box and set Period
to 0.3.

4 Run the simulation again. Now the entities arrive much faster than the
server can process them. You can make these observations from the plot:

• Every 0.3 s, the queue length increases because a new entity arrives.

• Every 1 s, the queue length decreases because the server becomes empty
and accepts an entity from the queue.

2-22



Explore Simulations Using the Debugger and Plots

• Every 3 s, the queue length increases and then decreases in the same
time instant. The plot shows two markers at T = 0, 3, 6, and 9.

5 Reopen the Time-Based Entity Generator block’s dialog box and set Period
to 1.1.

6 Run the simulation again. Now the entities arrive more slowly than the
server’s service rate, so every entity that arrives at the queue is able to
depart in the same time instant. The queue length is never greater than
zero for a positive amount of time.

View Waiting Times and Utilization
The queue length is an example of a statistic that quantifies a state at a
particular instant. Other statistics, such as average waiting time and server
utilization, summarize behavior between T=0 and the current time. To modify
the model so that you can view the average waiting time of entities in the
queue and server, as well as the proportion of time that the server spends
storing an entity, use the following procedure:

2-23



2 Building Simple Models with SimEvents® Software

Note To skip the model-building steps and open a completed version of the
model for this section, enter simeventsdocex('doc_dd1_wait_util') in the
MATLAB Command Window. Then skip to step 8 on page 2-25 to run the
simulation.

1 Double-click the FIFO Queue block to open its dialog box. Click the
Statistics tab, set the Average wait parameter to On, and click OK. This
causes the block to have a signal output port for the signal representing the
average duration that entities wait in the queue. The port label is w.

2 Double-click the Single Server block to open its dialog box. Click the
Statistics tab, set both the Average wait and Utilization parameters to
On, and click OK. This causes the block to have a signal output port labeled
w for the signal representing the average duration that entities wait in the
server, and a signal output port labeled util for the signal representing the
proportion of time that the server spends storing an entity.

3 Copy the Signal Scope1 block and paste it into the model window.

Note If you modified the plot corresponding to the Signal Scope1 block,
then one or more parameters in its dialog box might be different from the
default values. Copying a block also copies parameter values.

4 Double-click the new copy to open its dialog box.

5 Set Plot type to Continuous and click OK. For summary statistics like
average waiting time and utilization, a continuous-style plot is more
appropriate than a stairstep plot. Note that the Continuous option refers
to the appearance of the plot and does not change the signal itself to make
it continuous-time.

6 Copy the Signal Scope2 block that you just modified and paste it into the
model window twice. You now have five scope blocks.

Each copy assumes a unique name. If you want to make the model and
plots easier to read, you can click the names underneath each scope block

2-24



Explore Simulations Using the Debugger and Plots

and rename the block to use a descriptive name like Queue Waiting Time,
for example.

7 Connect the util signal output port and the two w signal output ports to
the in signal input ports of the unconnected scope blocks by dragging the
mouse pointer from port to port. The model now looks like the following
figure. Save the model.

8 Run the simulation with different values of the Period parameter in
the Time-Based Entity Generator block, as described in “Simulate with
Different Intergeneration Times” on page 2-21. Look at the plots to see how
they change if you set the intergeneration time to 0.3 or 1.1, for example.

Observations from Plots

• The average waiting time in the server does not change after the first
departure from the server because the service time is fixed for all departed

2-25



2 Building Simple Models with SimEvents® Software

entities. The average waiting time statistic does not include partial waiting
times for entities that are in the server but have not yet departed.

• The utilization of the server is nondecreasing if the intergeneration time is
small (such as 0.3) because the server is constantly busy once it receives
the first entity.

The utilization might decrease if the intergeneration time is larger than
the service time (such as 1.5) because the server has idle periods between
entities.

2-26



Explore Simulations Using the Debugger and Plots

• The average waiting time in the queue increases throughout the simulation
if the intergeneration time is small (such as 0.3) because the queue gets
longer and longer.

The average waiting time in the queue is zero if the intergeneration time is
larger than the service time (such as 1.1) because every entity that arrives
at the queue is able to depart immediately.

2-27



2 Building Simple Models with SimEvents® Software

Information About Race Conditions and Random
Times
Other examples modify this one by varying the processing sequence for
simultaneous events or by making the intergeneration times and/or service
times random. The modified examples are:

• “Using Random Intergeneration Times in a Queuing System” on page 3-9

• “Random Service Times in a Queuing System” on page 4-11

2-28



Build a Hybrid Model

Build a Hybrid Model

In this section...

“Overview” on page 2-29

“Lesson 1: Run the Time-Based Model” on page 2-30

“Lesson 2: Explore the Time-Based Model” on page 2-32

“Lesson 3: Add Event-Based Behavior” on page 2-35

“Lesson 4: Run the Hybrid Model” on page 2-40

“Event-Based and Time-Based Dynamics in the Simulation” on page 2-43

Overview
This tutorial shows you how to add SimEvents blocks to an existing Simulink
model to create a hybrid model. In SimEvents, a hybrid model is one that
incorporates both time-based and event-based modeling.

The Simulink model is an anti-lock braking system (ABS). You introduce
discrete-event blocks that simulate a network delay effect between the ABS
controller and the braking system, creating a simple distributed control
system. The completed model, shown in the graphic below, will illustrate the
negative effects of communication delays on the overall braking performance.

You will:

• Use SimEvents gateway blocks to convert time-based signals to event-based
signals and vice-versa.

• Attach data from time-based dynamics to SimEvents entities whose timing
is independent of the time-based dynamics.

2-29



2 Building Simple Models with SimEvents® Software

• Use discrete events to update signals that influence time-based dynamics.

• Adjust parameters in the discrete-event system to affect the results of the
overall hybrid model.

Note A more realistic way to represent a distributed control system is
to model communication over a shared network, where time delays and
transmission failures might depend on network traffic from other distributed
components. The Effects of Communication Delays on an ABS Control System
example shows the behavior of the ABS system when distributed components
communicate over a more complex Control Area Network (CAN) bus.

Lesson 1: Run the Time-Based Model
This lesson examines the performance of the existing ABS model. In this
version of the model, which contains only Simulink blocks, there is no
communication delay between components of the ABS.

Open the existing ABS model by clicking abs_timebased.

The model contains the following subsystem blocks that together form a
completed closed-loop model of an ABS:

2-30



Build a Hybrid Model

• Desired Relative Slip block that provides a setpoint to the controller.

• ABS Controller subsystem that accepts a setpoint from the Desired Relative
Slip block and provides a control signal to the braking system.

• Brake System Dynamics subsystem that models the behavior of an actual
braking system.

• Sensor Relative Slip subsystem that feeds a measured slip value back to
the ABS Controller block.

Simulate the braking system. In the Simulink Editor, select
Simulation > Run.

The scope outputs show:

• The change in wheel speed versus the decreasing speed of the vehicle. The
plot shows that the wheel speed stays below the vehicle speed without
locking up (suddenly decreasing towards zero), with vehicle speed going to
zero in less than 15 seconds.

• The slip response of the braking system relative to the Desired setpoint.
Throughout the simulation, the error between the desired slip value and
the measured slip value remains small.

2-31



2 Building Simple Models with SimEvents® Software

Lesson 2: Explore the Time-Based Model
Before you modify the model to add discrete-event behavior, you should
understand how the time-based portion of the model works. This lesson
examines each block in the time-based model.

Note For a more detailed analysis of a similar ABS model, see Modeling an
Anti-Lock Braking System.

2-32



Build a Hybrid Model

Desired Relative Slip Block

The desired slip value is based on some physical modeling known as the
mu-slip curve. The mu-slip curve is the friction coefficient between the tire
and the road surface, mu, expressed as an empirical function of slip. The
desired slip is set to the value of slip at which the mu-slip curve reaches a
peak value, this being the optimum value for minimum braking distance.
For more information about the mu-slip curve, see Modeling an Anti-Lock
Braking System.

Controller Subsystem

The ABS Controller subsystem contains a further subsystem that executes
bang-bang control, based upon the error between measured slip and desired
slip. A bang-bang controller is a type of feedback controller that switches
between two states, based on the sign of the error signal at its input. In this
model, the output of the bang-bang controller translates to an on/off rate
that is supplied to the braking system.

2-33



2 Building Simple Models with SimEvents® Software

Brake System Dynamics Subsystem

The Brake System Dynamics subsystem is complex. What follows is a
high-level examination of how it works. For a more detailed analysis of a
similar system, see Modeling an Anti-Lock Braking System.

The Brake System Dynamics subsystem:

• Accepts a control signal from the ABS Controller subsystem, based on the
error between measured slip and desired slip.

• Delays the signal from the ABS Controller subsystem to model the delay
associated with the hydraulic lines of an actual braking system.

• Integrates the on/off rate supplied by the ABS Controller subsystem, to
determine the required braking pressure.

• Multiplies the brake pressure signal by the area and radius of the hydraulic
braking system piston, relative to the wheel, to determine the brake torque
that is applied to the wheel.

• Uses the calculated brake torque to calculate the wheel speed.

• Uses both the vehicle weight and the friction coefficient between the tire
and the road surface to determine the vehicle speed.

• Calculates the relative slip, based on the wheel speed, the vehicle speed,
and the minimum required stopping distance.

2-34



Build a Hybrid Model

Sensor Relative Slip Subsystem

The Sensor Relative Slip subsystem contains a Gain block where you can
specify the accuracy of the sensor in converting the actual relative slip to a
measured value that feeds back to the controller. A gain value of 1 simulates
the ideal case of a sensor that measures the slip with 100% accuracy.

Lesson 3: Add Event-Based Behavior
In this lesson, you’ll create the hybrid model by adding blocks from the
SimEvents library to the model introduced in “Lesson 1: Run the Time-Based
Model” on page 2-30. To simplify the top-level view of the model, the
SimEvents blocks are placed in a subsystem. This subsystem models a
communication delay between the ABS controller and the braking system.
The communication delay is a simple representation of the delay effect that
distributed components might experience when they communicate over a
heavily-loaded in-vehicle network. Each SimEvents entity in the delay
subsystem represents a data packet that conveys control signal information
between the controller and the braking system.

Top-Level View of Completed Hybrid Model

The completed model will look as shown in the preceding graphic. Both the
ABS Controller and Brake System Dynamics blocks are time-based systems.
The Network Delay subsystem block is an event-based system. In SimEvents,
when signals transition between the time-based domain and the event-based
domain, or vice-versa, the blocks in the Gateways block library manage this
signal conversion.

2-35



2 Building Simple Models with SimEvents® Software

To learn about the Network Delay subsystem behavior and for instructions
on building and integrating the subsystem, see:

• “How the Network Delay Subsystem Works” on page 2-36

• “Add the Network Delay Subsystem Block” on page 2-37

• “Add the Network Delay Subsystem Contents” on page 2-38

• “Complete the Hybrid Model” on page 2-39

How the Network Delay Subsystem Works
The Network Delay subsystem models a communication link that samples
information from the ABS controller and conveys that information to the
braking system. The following sections discuss how the network delay
subsystem works, before providing instructions to build the subsystem and
integrate it with the existing ABS system to complete the hybrid model.

Network Delay Subsystem Contents

• A control signal from the ABS Controller block enters the subsystem via
the In1 block. The Timed to Event Signal gateway block converts the
time-based signal from the controller into an event-based signal, so that the
data is available to the discrete-event blocks. In any SimEvents model, the
way that the software converts time-based signals to event-based signals
depends on the solver you use for your simulation. In this tutorial, the
model uses a variable-step solver. For more information, see “Variable-Step
Solvers for Discrete-Event Systems”.

2-36



Build a Hybrid Model

• Periodically, the Time-Based Entity Generator block creates an entity that
conveys the control signal value from the ABS controller to the braking
system.

• The Set Attribute block attaches the control signal value to the entity. This
data-carrying entity is a data packet in the network.

• The N-Server block models the latency in the communication system by
delaying each data packet.

• The Get Attribute block models the reconstruction of data at the receiver.
This block connects to an Event to Timed Signal block that converts the
data back to a time-based signal. This time-based signal connects to the
Brake System Dynamics block at the top level of the model.

• Once the time-based control signal departs the subsystem and enters the
Brake System Dynamics block, the entity that carries the data through the
delay susbsystem is not needed. The Entity Sink block absorbs the entity.

This subsystem models communication from the controller to the braking
system, but does not model the feedback path from the braking system to the
controller. The model that you create is only a first step toward modeling
a true distributed control system, where all components of the system
communicate over a common communication bus. Next steps might involve
modeling the communication in the feedback path and replacing the N-Server
block with a more realistic representation of the communication link.

Add the Network Delay Subsystem Block
To add the Network Delay subsystem block to the original time-based model:

1 Open the abs_timebased model.

2 Select File > Save As. Save the model to your working folder as
abs_hybrid.

3 Open the Simulink and SimEvents libraries. In the MATLAB Command
Window enter simulink and simevents.

4 From the Simulink Ports & Subsystems library, drag a Subsystem block
into the model window.

2-37



2 Building Simple Models with SimEvents® Software

5 For the newly inserted Subsystem block, place the cursor in the text box
that is beneath the block. Type the new name, Network Delay.

6 Double-click the Delay Subsystem block. The procedure, “Add the Network
Delay Subsystem Contents” on page 2-38 shows you how to build the
contents of the subsystem.

Add the Network Delay Subsystem Contents
In this procedure, you add event-based blocks that model a communications
delay to the Network Delay subsystem block. When you complete the
procedure, the contents of the Network Delay block should look as shown in
the graphic.

1 In the SimEvents library, double-click the Generators library. Double-click
the Entity Generators sublibrary and drag a Time-Based Entity
Generator block into the subsystem window.

2 To review the entity generation behavior of the Time-Based Entity
Generator block, double-click it. The default value of Generate
entities upon is Intergeneration time from dialog, with a default
intergeneration period of 1 s. Accept these default values without making
any change by clicking Cancel.

3 In the Generators library, double-click the he Signal Generators
sublibrary. Drag the Event-Based Random Number block into the
subsystem window.

2-38



Build a Hybrid Model

4 Double-click the Event-Based Random Number block. Set Distribution
to Uniform, Minimum to 0.01, and Maximum to 0.06. Click OK. These
settings ensure that the service time of the N-Server block varies with
a uniform distribution of values between a minimum of 0.01s and a
maximum of 0.06s.

5 From the Attributes library, drag the Set Attribute and Get Attribute
blocks into the subsystem window.

6 Double-click the Set Attribute block. The Set Attribute tab of the dialog
box contains a table. On the first row of the table, set Name to Value and
set Value From to Signal port. Click OK. The block acquires an extra
signal input port, Value.

7 Double-click the Get Attribute block. The Get Attribute tab of the dialog
box contains a table. On the first row of the table, set Name to Value.
Click OK. The block acquires an extra signal output port, Value.

8 From the Servers library, drag the N-Server block into the subsystem
window.

9 Double-click the N-Server block. Set Service time from to Signal port
t. Click OK. The block acquires an extra signal input port, t.

10 From the SimEvents Sinks library, drag an Entity Sink block into the
subsystem window.

11 From the Gateways library, drag a Timed to Event Signal block and an
Event to Timed Signal block into the subsystem window.

12 Connect and place the blocks as shown in Network Delay Subsystem
Contents on page 2-36.

13 Navigate to the top-level view of the model. Select View > Navigate > Up
to Parent. Save the model.

Complete the Hybrid Model
Before you connect the newly created Network Delay subsystem block to
complete the hybrid model, simplify the top-level view of the original ABS
model by grouping related blocks. When you complete this procedure, the

2-39



2 Building Simple Models with SimEvents® Software

model looks as shown in Top-Level View of Completed Hybrid Model on page
2-35.

1 To select both the Desired Relative Slip and ABS Controller blocks of the
model, hold down the left mouse button and drag the mouse. As you drag
the mouse, a box appears. Drag this box across a portion of both blocks.
When you release the mouse button, the two blocks are highlighted in blue.

2 Right-click one of the two highlighted blocks and select Create Subsystem
from Selection. The software places both blocks inside a new Subsystem
block.

3 For the newly created Subsystem block, place the cursor in the text box
that is beneath the block. type the new name, ABS Controller.

4 To select both the Brake System Dynamics and Sensor Relative Slip blocks
of the model, hold down the left mouse button and drag the mouse. As you
drag the mouse, a box appears. Drag this box across a portion of both blocks.
When you release the mouse button, the two blocks are highlighted in blue.

5 Right-click one of the two highlighted blocks and select Create Subsystem
from Selection. The software places both blocks inside a new Subsystem
block.

6 For the newly created Subsystem block, place the cursor in the text box
that is beneath the block. type the new name, Brake System Dynamics.

7 Connect the previously created Network Delay block between the ABS
Controller and Brake System Dynamics blocks. The hybrid model is now
complete.

8 Save the model.

Lesson 4: Run the Hybrid Model
Run the completed abs_hybrid model. In the Simulink Editor, select
Simulation > Run.

2-40



Build a Hybrid Model

By comparing these plots with the plots in “Lesson 1: Run the Time-Based
Model” on page 2-30, you can see that the delay introduced between the ABS
controller and the braking system significantly degrades the performance of
the braking system:

• Between 6s and 8s, the measured slip increases and the wheel speed begins
to lock up (decrease rapidly towards zero).

• At about 14s, the measured slip increases again. The wheel speed locks
up, falling to zero.

• The vehicle takes almost 17s to come to rest. This value is almost 2s longer
than in the original time-based model.

2-41



2 Building Simple Models with SimEvents® Software

Change the Network Performance
One way to experiment with the simulation is to change the performance of
the network and run the simulation again. Try making either of the following
sets of changes. Observe the changes in results.

• In the Event-Based Random Number block, set Maximum to 0.1.
This change increases the maximum service time of the N-Server
block, representing an increase in the latency of the network. Rerun
the simulation. The increased latency further degrades the braking
performance.

• In the Time-Based Entity Generator block, restore the original values. Set
Distribution to Uniform, Minimum to 0.01, and Maximum to 0.06.
Also in the Time-Based Entity Generator block, set Intergeneration time
from dialog to 0.01. The last change increases the frequency of entity
generation. The increased entity generation means that the incoming
control signal is sampled more regularly, increasing the fidelity of the
network. Rerun the simulation. The increased network fidelity improves
the braking performance.

2-42



Build a Hybrid Model

Event-Based and Time-Based Dynamics in the
Simulation
In the abs_hybrid model, the time-based dynamics of the braking system
coexist with the event-based dynamics of the network delay subsystem. When
you run the simulation, the solver and the event calendar both play a role.
Upon major time steps of the solver, the simulation solves the ordinary
differential equations that represent the dynamics of the braking system.
Solving the event-based dynamics entails scheduling and processing events,
such as service completion and entity generation, on the SimEvents event
calendar. Because the model uses a variable-step solver, when events occur in
the discrete-event system, the solver has a major time step.

To learn more about:

• Solvers for SimEvents models, see “Solvers for Discrete-Event Systems”.

• Types of events in the SimEvents software and the role of the event
calendar, see “Events in SimEvents Models”.

In this model, time-based blocks interact with event-based blocks at the input
and output of the Network Delay subsystem. At each major time step of the
solver, the ABS Controller block updates the value at the input port of the
Network Delay subsystem. The Set Attribute block, which is event-based,
uses this value upon the next entity arrival at the Set Attribute block. Such
entity arrivals occur at times 0, 1, 2, and so on.

When an entity completes its service, the entity arrives at the Get Attribute
block, which is event-based. This block updates the value at the output port of
the subsystem. The Brake System Dynamics block, which is time-based, uses
this value upon the next major time step of the solver.

2-43



2 Building Simple Models with SimEvents® Software

Key Concepts in SimEvents Software

In this section...

“Meaning of Entities in Different Applications” on page 2-44

“Entity Ports and Paths” on page 2-44

“Data and Signals” on page 2-45

Meaning of Entities in Different Applications
An entity represents an item of interest in a discrete-event simulation. The
meaning of an entity depends on what you are modeling. In this chapter,
examples use entities to represent abstract customers in a queuing system
and data packets from a remote controller to an actuator on the system being
controlled.

Entities do not have a graphical depiction in the model window the way
blocks, ports, and connection lines do.

Entity Ports and Paths
An entity output port provides a way for an entity to depart from a block . An
entity input port provides a way for an entity to arrive at a block.

A connection line indicates a path along which an entity can potentially
advance. However, the connection line does not imply that any entities
actually advance along that path during a simulation. For a given entity
path and a given time instant during the simulation, any of the following
could be true:

• No entity is trying to advance along that path.

• An entity has tried and failed to advance along that path. For some
blocks, it is normal for an entity input port to be unavailable under certain
conditions. This unavailability causes an entity to fail in its attempt to
advance along that path, even though the path is intact (that is, even
though the ports are connected). An entity that tries and fails to advance
is called a pending entity.

2-44



Key Concepts in SimEvents® Software

• An entity successfully advances along that path. This occurs only at a
discrete set of times during a simulation.

Note The simulation could also have one or more times at which one or more
entities successfully advance along a given entity path and, simultaneously,
one or more different entities try and fail to advance along that same entity
path. For example, an entity departs from a queue and, simultaneously, the
next entity in the queue tries and fails to depart.

Data and Signals
In time-based dynamics, signals express the outputs of dynamic systems
represented by blocks. Event-based blocks can also read and produce signals.
One way to learn about signals is to plot them; the discussion in “Explore the
D/D/1 System Using Plots” on page 2-19 is about visualizing signals that
reflect behavior of event-based blocks.

Time-based and event-based dynamics can interact via the data shared by
both types of blocks. Attributes of entities provide a way for entities to carry
data with them. The subsystem in “Lesson 3: Add Event-Based Behavior”
on page 2-35 illustrates the use of attributes in the interaction between
time-based and event-based dynamics.

Although signals are common to both time-based and event-based dynamics,
event-based dynamics can produce signals that have slightly different
characteristics. For more information on event-based signals, see “Role of
Event-Based Signals in SimEvents”.

2-45



2 Building Simple Models with SimEvents® Software

2-46



3

Create Entities Using
Intergeneration Times

• “Role of Entities in SimEvents Models” on page 3-2

• “Specify Intergeneration Times for Entities” on page 3-4



3 Create Entities Using Intergeneration Times

Role of Entities in SimEvents Models

In this section...

“Create Entities in a Model” on page 3-2

“Vary the Interpretation of Entities” on page 3-2

“Data and Entities” on page 3-2

“Introduction to the Time-Based Entity Generator” on page 3-3

Create Entities in a Model
As described in “What Is an Entity?” on page 1-7, entities are discrete items
of interest in a discrete-event simulation. You determine what an entity
signifies, based on what you are modeling.

SimEvents models typically contain at least one source block that generates
entities. Other SimEvents blocks in the model process the entities that the
source block generates.

Vary the Interpretation of Entities
A single model can use entities to represent different kinds of items. For
example, if you are modeling a factory that processes two different kinds
of parts, then you can

• Use two Time-Based Entity Generator blocks to create the two kinds of
parts.

• Use one Time-Based Entity Generator block and subsequently assign an
attribute to indicate what kind of part each entity represents.

Data and Entities
You can optionally attach data to entities. Such data is stored in one or more
attributes of an entity. You define names and numeric values for attributes.
For example, if your entities represent a message that you are transmitting
across a communication network, you might assign data called length that
indicates the length of each particular message. You can read or change the
values of attributes during the simulation.

3-2



Role of Entities in SimEvents® Models

Introduction to the Time-Based Entity Generator
The Time-Based Entity Generator block creates entities. You configure the
Time-Based Entity Generator block to customize aspects such as:

• How the block determines the time intervals between successive entities.
To learn more, see “Specify Intergeneration Times for Entities” on page 3-4.

• How the block reacts when it is temporarily unable to output entities. To
learn more, see the online reference page for the block.

• The relative priority of entity generation events compared to other kinds of
events that might occur simultaneously. To learn more, see “Processing
Sequence for Simultaneous Events” online.

The Time-Based Entity Generator block resides in the Entity Generators
sublibrary of the Generators library of the SimEvents library set.

3-3



3 Create Entities Using Intergeneration Times

Specify Intergeneration Times for Entities

In this section...

“Definition of Intergeneration Time” on page 3-4

“Approaches for Determining Intergeneration Time” on page 3-4

“How to Specify a Distribution” on page 3-5

“How to Specify Intergeneration Times from a Signal” on page 3-8

“Using Random Intergeneration Times in a Queuing System” on page 3-9

“Use an Arbitrary Discrete Distribution as Intergeneration Time” on page
3-10

“Use a Step Function as Intergeneration Time” on page 3-11

Definition of Intergeneration Time
The intergeneration time is the time interval between successive entities that
the block generates. For example, if the block generates entities at T = 50, T =
53, T = 60, and T = 60.1, the corresponding intergeneration times are 3, 7, and
0.1. After each new entity departs, the block determines the intergeneration
time that represents the duration until the block generates the next entity.

Approaches for Determining Intergeneration Time
You configure the Time-Based Entity Generator block by indicating criteria
that it uses to determine intergeneration times for the entities it creates. You
can indicate the criteria by:

• Specifying a statistical distribution. Upon generating each entity, the block
chooses the time interval until the next entity generation. In a simulation
that generates a large number of entities, the set of intergeneration times
follows the distribution you specify.

• Providing intergeneration times explicitly as values of a signal. Upon
generating each entity, the block reads the value of the input signal. The
block uses that value as the time interval until the next entity generation.
The signal can be random or nonrandom.

3-4



Specify Intergeneration Times for Entities

Comparison of Approaches
Using intergeneration times from a distribution might be appropriate if you
have a mathematical model of the arrival process for the customers, packets,
or other items that entities represent in your model.

Using intergeneration times from a signal might be appropriate if you:

• Want to use a statistical distribution that is not constant, uniform, or
exponential.

• Want the intergeneration time to depend on the dynamics of other blocks in
your model.

• Have a set of intergeneration times in a MATLAB workspace variable or in
a MAT-file.

How to Specify a Distribution

• “Specify a Constant, Uniform, or Exponential Distribution” on page 3-5

• “Specify Other Probability Distributions” on page 3-7

Specify a Constant, Uniform, or Exponential Distribution
If you want entity intergeneration times to be constant or to follow a uniform
or exponential distribution, configure the Time-Based Entity Generator as
follows:

1 Set Generate entities with to Intergeneration time from dialog.

2 Choose a statistical distribution to describe the time interval between
successive entities. Set the Distribution parameter to one of these values:

• Constant. Then set the Period parameter to the constant
intergeneration time.

• Uniform. Then set theMinimum and Maximum parameters to define
the range of possible intergeneration times. The distribution is uniform
over this range.

• Exponential. Then set the Mean parameter to the mean of the
exponential distribution. In a simulation with a large number of entities,
the average intergeneration time is close to theMean parameter value.

3-5



3 Create Entities Using Intergeneration Times

Probability density functions and entity generation times

The uniform distribution has probability density function

f x
x

( ) = −
< <⎧

⎨
⎪

⎩⎪

1
Maximum Minimum

Minimum Maximum

0 Otherwise

The exponential distribution with mean 1/λ has probability density function

f x
x x

xλ
λ λ

( )
exp

=
−( ) ≥

<
⎧
⎨
⎩ 0

0
0

The probability density function does not predict the actual intergeneration
time between a particular entity and the next entity. By integrating the
probability density function for the distribution you select, you can determine
the probability that the block generates the next entity in a range of durations
after the previous entity.

Interpreting Probability Density Function

Suppose you set Distribution to Exponential and setMean to 0.5. A mean
of 0.5 in the exponential distribution corresponds to

 = =1
0 5

2
.

During the simulation, suppose the block has just generated an entity. The
probability that the block generates the next entity during the next 0.3
seconds is the probability that the intergeneration time is in the range from 0
to 0.3. You can compute this probability by integrating the probability density
function over that range:

3-6



Specify Intergeneration Times for Entities

P

f x dx

x dx

[ . ]

( )

exp( )

.

.

0 0 3

2 2

0

0 3

0

0 3

≤ ≤

=

= −

∫
intergeneration time



∫∫
= − −

= − − +
≈

=
=exp( )

exp( . )
.

.2

0 6 1
0 45

0
0 3x x

x

Role of initial seed for uniform and exponential distributions

If you set Distribution to Uniform or Exponential, the dialog box includes
an Initial seed parameter. This parameter specifies the seed on which the
stream of random numbers is based. For a fixed seed, the random behavior is
repeatable the next time you run the simulation. Changing the seed changes
the stream of random numbers. Typically, you would set the Initial seed
parameter to a large (for example, five-digit) odd number.

Specify Other Probability Distributions
Entity intergeneration times can follow any distribution that the Event-Based
Random Number block supports. To specify the distribution, set up your
model as follows:

1 In the Time-Based Entity Generator block, set the Generate entities
with parameter to Intergeneration time from port t. A signal input
port labeled t appears on the block.

2 In your model, insert the Event-Based Random Number block. Connect it
to the t signal input port of the Time-Based Entity Generator block.

3 In the Event-Based Random Number block dialog box, set parameters
to describe the probability distribution that you want to use for entity
intergeneration times. For an example, see “Use an Arbitrary Discrete
Distribution as Intergeneration Time” on page 3-10.

During the simulation, each time that the Time-Based Entity Generator block
generates an entity, the Event-Based Random Number block generates a new
random number which becomes the duration until the next entity generation.

3-7



3 Create Entities Using Intergeneration Times

How to Specify Intergeneration Times from a Signal
If you want to provide intergeneration times explicitly as values of a signal,
set up your model as follows:

1 In the Time-Based Entity Generator block, set the Generate entities
with parameter to Intergeneration time from port t. A signal input
port labeled t appears on the block.

2 In your model, create an event-based signal whose value at each generation
time is the time until the next entity generation.

For more information

For examples of how to create such signals, see:

• “Use a Step Function as Intergeneration Time” on page 3-11

• “Use an Arbitrary Discrete Distribution as Intergeneration Time” on
page 3-10

For more details about creating event-based signals, see:

• “Generate Random Signals”

• “Create Event-Based Signals Using Data Sets”

• “Time-Based and Event-Based Signal Conversion”

3 Connect the signal to the Time-Based Entity Generator block at its signal
input port labeled t.

Upon generating each entity, the Time-Based Entity Generator block reads
the value of the input signal and uses that value as the time interval until
the next entity generation.

3-8



Specify Intergeneration Times for Entities

Note The block reads the input signal upon each entity generation, not upon
each simulation sample time, so signal values that occur between successive
entity generation events have no effect on the entity generation process. For
example, if the input signal is 10 when the simulation starts, 1 at T=1, and
10 from T=9 until the simulation ends, then the value of 1 never becomes an
intergeneration time.

Using Random Intergeneration Times in a Queuing
System
Open the model that you created in “Build a Discrete-Event Model”
on page 2-2. Alternatively, in the MATLAB Command Window, enter
simeventsdocex('doc_dd1') to open a prebuilt version of the same model.

By examining the Time-Based Entity Generator block Distribution and
Period parameters, you can see that the block is configured to use a constant
intergeneration time of 1 second. To use a random intergeneration time
instead, try the variations in the following table and see how they affect the
plot that the simulation creates.

Parameter Values Simulation Results

• Distribution = Uniform

• Minimum = 1

• Maximum = 3

The first entity, generated at T=0,
appears in the plot at T=1 after its
service is complete. The second entity,
generated at a random time between T=1
and T=3, appears in the plot between
T=2 and T=4.

• Distribution = Uniform

• Minimum = 1

• Maximum = 1.5

The plot might show more entities
compared to the preceding scenario
because the range of intergeneration
times has the same minimum but a
smaller maximum.

• Distribution = Exponential

• Mean = 0.5

This system is called an M/D/1
queuing system, where the M stands
for Markovian and indicates a
Poisson arrival rate. The exponential
distribution has no upper bound, so the
time between successive entities could
be any positive number.

3-9



3 Create Entities Using Intergeneration Times

Use an Arbitrary Discrete Distribution as
Intergeneration Time
This example uses the Event-Based Random Number block to generate
entities at intervals of 1, 1.5, or 2 seconds.

The Event-Based Random Number block has these parameters:

• Distribution = Arbitrary discrete

• Value vector = [1 1.5 2]

• Probability vector = [0.25 0.5 0.25]

As a result, the block generates intergeneration times Δt such that

P t
P t
P t

( ) .
( . ) .
( ) .

Δ
Δ
Δ

= =
= =
= =

1 0 25
1 5 0 5
2 0 25

When you run the simulation, the plot shows that the entities departing from
the server are spaced 1, 1.5, or 2 seconds apart. In this example, however, the
simulation time is much too short to verify that the random number generator
is applying the specified probabilities.

3-10



Specify Intergeneration Times for Entities

Use a Step Function as Intergeneration Time
This example uses the Step block to generate entities at intervals of 1 or 2
seconds.

The Step block has these parameters:

• Step time = 2.8

• Initial value = 1

• Final value = 2

As a result, the block generates a signal whose value is 1 from T=0 to T=2.8,
and whose value is 2 thereafter.

3-11



3 Create Entities Using Intergeneration Times

When you run the simulation, the plot shows that the entities departing from
the server are initially spaced 1 second apart and later spaced 2 seconds apart.

The Time-Based Entity Generator block reads intergeneration times from
the step signal each time it generates an entity. The table below shows
when the Time-Based Entity Generator block generates entities and which
intergeneration time values it reads in each instance. The table also shows
when each entity departs from the server, which you can see from the
plot. Although the Step block starts producing the value of 2 at T=2.8, the
Time-Based Entity Generator block does not read the new value until the next
time it generates an entity, at T=3.

Entity Generation
Time

Intergeneration Time
Until Next Entity
Generation

Departure Time of
Entity from Server

0 1 1

1 1 2

2 1 3

3 2 4

5 2 6

3-12



Specify Intergeneration Times for Entities

Entity Generation
Time

Intergeneration Time
Until Next Entity
Generation

Departure Time of
Entity from Server

7 2 8

9 2 10

3-13



3 Create Entities Using Intergeneration Times

3-14



4

Basic Queues and Servers

• “Queues in SimEvents Models” on page 4-2

• “Servers in SimEvents Models” on page 4-4

• “Model Basic Queueing Systems” on page 4-6



4 Basic Queues and Servers

Queues in SimEvents Models

In this section...

“Behavior and Features of Queues” on page 4-2

“Physical Queues and Logical Queues” on page 4-2

“Access Queue Blocks” on page 4-3

Behavior and Features of Queues
In a discrete-event simulation, a queue stores entities for some length of time
that cannot be determined in advance. The queue attempts to output entities
as soon as it can, but its success depends on whether the next block accepts
new entities. An everyday example of a queue is a situation where you stand
in a line with other people to wait for someone (a bank teller, a retail cashier,
etc.) to address your needs and you cannot determine in advance how long
you must wait.

Distinguishing features of different queues include

• The queue capacity, which is the number of entities the queue can store
simultaneously

• The queue discipline, which determines which entity departs first if the
queue stores multiple entities

Physical Queues and Logical Queues
In some cases, a queue in a model is similar to an analogous aspect of the
real-world system being modeled. This kind of queue is sometimes called a
physical queue. For example, you might use a queue to represent a sequence of

• People standing in line

• Airplanes waiting to access a runway

• Messages waiting to be sent

• Parts waiting to be assembled in a factory

• Computer programs waiting to be executed

4-2



Queues in SimEvents® Models

In other cases, a queue in a model does not arise in an obvious way from the
real-world system but instead is included for modeling purposes. This kind of
queue is sometimes called a logical queue. For example, you might use a queue
to provide a temporary storage area for entities that might otherwise have
nowhere to go. Such use of a logical queue can prevent deadlocks or simplify
the simulation. For example, see “Example of a Logical Queue” on page 4-10.

Access Queue Blocks
Queue blocks reside in the Queues library of the SimEvents library set. This
chapter focuses on the FIFO Queue block.

Although queuing theory typically treats a queue-server pair as one
component, SimEvents software contains queue blocks and server blocks as
distinct components. You often attach a queue block directly to a server block,
but you might also want to use the blocks in other ways.

4-3



4 Basic Queues and Servers

Servers in SimEvents Models

In this section...

“Behavior and Features of Servers” on page 4-4

“What Servers Represent” on page 4-5

“Access Server Blocks” on page 4-5

Behavior and Features of Servers
In a discrete-event simulation, a server stores entities for some length of time,
called the service time, and then attempts to output the entity. During the
service period, the block is said to be serving the entity that it stores. An
everyday example of a server is a person (a bank teller, a retail cashier, etc.)
with whom you perform a transaction with a projected duration.

The service time for each entity is computed when it arrives, which contrasts
with the inherent unknowability of the storage time for entities in queues. If
the next block does not accept the arrival of an entity that has completed its
service, however, then the server is forced to hold the entity longer.

Distinguishing features of different servers include

• The number of entities it can serve simultaneously, which could be finite or
infinite

• Characteristics of, or the method of computing, the service times of arriving
entities

• Whether the server permits certain arriving entities to preempt entities
that are already stored in the server

Tip In the absence of preemption, a finite-capacity server does not accept
new arrivals when it is already full. You can place a queue before each
finite-capacity server, establishing a place for entities to stay while they are
waiting for the server to accept them. Otherwise, the waiting entities might
be stored in various different locations in the model and the situation might
be more difficult for you to predict or analyze.

4-4



Servers in SimEvents® Models

What Servers Represent
In some cases, a server in a model is similar to an analogous aspect of the
real-world system being modeled. For example, you might use a server to
represent

• A person (such as a bank teller) who performs a transaction with each
arriving customer

• A transmitter that processes and sends messages

• A machine that assembles parts in a factory

• A computer that executes programs

You might use an infinite-capacity server to represent a delaying mechanism.
An example of this is in the subsystem in “Build a Hybrid Model” on page 2-29.

Servers Inserted for Modeling Purposes
In some cases, a server in a model does not arise in an obvious way from the
real-world system but instead is included for modeling purposes. A common
modeling technique involves a delay of duration zero, that is, an infinite server
whose service time is zero, either to break an algebraic loop or to provide
a place for an entity to reside while a preceding block updates its output
signals. For details and examples, see “Interleaving of Block Operations” and
“Loops in Entity Paths Without Sufficient Storage Capacity” online.

Access Server Blocks
Server blocks reside in the Servers library of the SimEvents library set. This
chapter focuses on the Single Server block.

4-5



4 Basic Queues and Servers

Model Basic Queueing Systems

In this section...

“Constructs Involving Queues and Servers” on page 4-6

“Example of a Logical Queue” on page 4-10

“Vary the Service Time of a Server” on page 4-10

See also the example in “Build a Discrete-Event Model” on page 2-2, which
illustrates how to create a queue-server pair and view statistics such as
server utilization.

Constructs Involving Queues and Servers
Here are some examples of ways to combine FIFO Queue and Single Server
blocks to model different situations:

• “Serial Queue-Server Pairs” on page 4-6

• “Parallel Queue-Server Pairs as Alternatives” on page 4-7

• “Parallel Queue-Server Pairs in Multicasting” on page 4-8

• “Serial Connection of Queues” on page 4-8

• “Parallel Connection of Queues” on page 4-9

Serial Queue-Server Pairs
Two queue-server pairs connected in series represent successive operations
that an entity undergoes. For example, parts on an assembly line are
processed sequentially by two machines.

While you might alternatively model the situation as a pair of servers without
a queue between them, the absence of the queue means that if the first server

4-6



Model Basic Queueing Systems

completes service on an entity before the second server is available, the entity
must stay in the first server past the end of service and the first server cannot
accept a new entity for service until the second server becomes available.

Parallel Queue-Server Pairs as Alternatives
Two queue-server pairs connected in parallel, in which each entity arrives at
one or the other, represent alternative operations. For example, vehicles wait
in line for one of several tollbooths at a toll plaza.

4-7



4 Basic Queues and Servers

Parallel Queue-Server Pairs in Multicasting
Two queue-server pairs connected in parallel, in which a copy of each entity
arrives at both, represent a multicasting situation such as sending a message
to multiple recipients. Note that copying entities might not make sense in
some applications.

Serial Connection of Queues
Two queues connected in series might be useful if you are using entities to
model items that physically experience two distinct sets of conditions while in
storage. For example, additional inventory items that overflow one storage
area have to stay in another storage area in which a less well-regulated
temperature affects the items’ long-term quality. Modeling the two storage
areas as distinct queue blocks facilitates viewing the average length of time
that entities stay in the overflow storage area.

4-8



Model Basic Queueing Systems

A similar example is in “Example of a Logical Queue” on page 4-10, except
that the example there does not suggest any physical distinction between
the two queues.

Parallel Connection of Queues
Two queues connected in parallel, in which each entity arrives at one or
the other, represent alternative paths for waiting. The paths might lead to
different operations, such as a line of vehicles waiting for a tollbooth modeled
and a line of vehicles waiting on a jammed exit ramp of the freeway. You
might model the tollbooth as a server and the traffic jam as a gate.

4-9



4 Basic Queues and Servers

Example of a Logical Queue
Suppose you are modeling a queue that can physically hold 100 entities and
you want to determine what proportion of the time the queue length exceeds
10. You can model the long queue as a pair of shorter queues connected in
series. The shorter queues have length 90 and 10.

Although the division of the long queue into two shorter queues has no basis
in physical reality, it enables you to gather statistics specifically related to one
of the shorter queues. In particular, you can view the queue length signal (#n)
of the queue having length 90. If the signal is positive over a nonzero time
interval, then the length-90 queue contains an entity that cannot advance to
the length-10 queue. This means that the length-10 queue is full. As a result,
the physical length-100 queue contains more than 10 items. Determining
the proportion of time the physical queue length exceeds 10 is equivalent
to determining the proportion of time the queue length signal of the logical
length-90 queue exceeds 0.

Vary the Service Time of a Server
The subsystem described in “Lesson 3: Add Event-Based Behavior” on page
2-35 includes an Infinite Server block that serves each entity for a random
amount of time. The random duration is the value of a signal that serves as
an input to the Infinite Server block. Similarly, the Single Server block can
read the service time from a signal, which enables you to vary the service time
for each entity that arrives at the server.

Some scenarios in which you might use a varying service time are as follows:

• You want the service time to come from a random number generator. In this
case, set the Single Server block’s Service time from parameter to Signal

4-10



Model Basic Queueing Systems

port t and use the Event-Based Random Number block to generate the
input signal for the Single Server block. Be aware that some distributions
can produce negative numbers, which are not valid service times.

• You want the service time to come from data attached to each entity. In
this case, set the Single Server block’s Service time from parameter to
Attribute and set Attribute name to the name of the attribute containing
the service time. An example is in the figure below.

To learn more about attaching data to entities, see “Set Entity Attributes”
online.

• You want the service time to arise from dynamics of the simulation. In this
case, set the Single Server block’s Service time from parameter to Signal
port t and create a signal whose value at the time an entity arrives at the
server is equal to the desired service time for that entity.

If the signal representing the service time is an event-based signal such
as the output of a Get Attribute block, ensure that the signal’s updates
occur before the entity arrives at the server. For common problems and
troubleshooting tips, see “Unexpected Use of Old Value of Signal” online.

Random Service Times in a Queuing System
Open the model that you created in “Build a Discrete-Event Model” on page
2-2, or enter simeventsdocex('doc_dd1') in the MATLAB Command
Window to open a prebuilt version of the same model. By examining the

4-11



4 Basic Queues and Servers

Single Server block’s Service time from and Service time parameters, you
can see that the block is configured to use a constant service time of 1 second.
To use a random service time instead, follow these steps:

1 Set Service time from to Signal port t. This causes the block to have a
signal input port labeled t.

2 From the Signal Generators sublibrary of the Generators library, drag the
Event-Based Random Number block into the model window and connect it
to the Single Server block’s signal input port labeled t.

3 Run the simulation and note how the plot differs from the one corresponding
to constant service times (shown in “Results of the Simulation” on page
2-14).

4-12



5

Designing Paths for Entities

• “Role of Paths in SimEvents Models” on page 5-2

• “Select Departure Path Using Output Switch” on page 5-5

• “Select Arrival Path Using Input Switch” on page 5-10

• “Combine Entity Paths” on page 5-13

• “Model a Packet Switch” on page 5-17



5 Designing Paths for Entities

Role of Paths in SimEvents Models

In this section...

“Definition of Entity Paths” on page 5-2

“Implications of Entity Paths” on page 5-2

“Overview of Routing Library for Designing Paths” on page 5-3

Definition of Entity Paths
An entity path is a connection from an entity output port to an entity input
port, depicted as a line connecting the entity ports of two SimEvents blocks.
An entity path represents the equivalence between an entity’s departure from
the first block and arrival at the second block. For example, in the model
shown below, any entity that departs from the FIFO Queue block’s OUT port
equivalently arrives at the Single Server block’s IN port.

The existence of the entity path does not guarantee that any entity actually
uses the path; for example, the simulation could be so short that no entities
are ever generated. Even when an entity path is used, it is used only at a
discrete set of times during the simulation.

Implications of Entity Paths
In some models, you can use the entity connection lines to infer the full
sequence of blocks that a given entity arrives at, throughout the simulation.

5-2



Role of Paths in SimEvents® Models

In many discrete-event models, however, the set of entity connection lines
does not completely determine the sequence of blocks that each entity arrives
at. For example, the model below shows two queues in a parallel arrangement,
preceded by a block that has one entity input port and two entity output ports.

By looking at the entity connection lines alone, you cannot tell which queue
block’s IN port an entity will arrive at. Instead, you need to know more about
how the one-to-two block (Output Switch) behaves and you might even need
to know the outcome of certain run-time decisions.

Overview of Routing Library for Designing Paths
You design entity paths by choosing or combining entity paths using some of
the blocks in the Routing library of the SimEvents library set. These blocks
have extra entity ports that let you vary the model’s topology (that is, the
set of blocks and connection lines).

Typical reasons for manipulating entity paths are

• To describe an inherently parallel behavior in the situation you are
modeling — for example, a computer cluster with two computers that
share the computing load. You can use the Output Switch block to send
computing jobs to one of the two computers. You might also use the
Path Combiner or Input Switch block if computing jobs share a common
destination following the pair of computers.

• To design nonlinear topologies, such as feedback loops — for example,
repeating an operation if quality criteria such as quality of service (QoS)

5-3



5 Designing Paths for Entities

are not met. You can use the Path Combiner block to combine the paths of
new entities and entities that require a repeated operation.

• To incorporate logical decision making into your simulation — for example,
determining scheduling protocols. You might use the Input Switch block to
determine which of several queues receives attention from a server.

Other libraries in the SimEvents library set contain some blocks whose
secondary features, such as preemption from a server or timeout from a queue
or server, give you opportunities to design paths.

5-4



Select Departure Path Using Output Switch

Select Departure Path Using Output Switch

In this section...

“Role of the Output Switch” on page 5-5

“Sample Use Cases” on page 5-5

“Select the First Available Server” on page 5-6

“Use an Attribute to Select an Output Port” on page 5-8

Role of the Output Switch
The block in the Routing library selects one among a number of entity output
ports. The selected port can change during the simulation. You have several
options for criteria that the block uses to select an entity output port.

When the selected port is not blocked, an arriving entity departs through
this port.

Sample Use Cases
Here are some scenarios in which you might use an output switch:

• Entities advance to one of several queues based on efficiency or fairness
concerns. For example, airplanes advance to one of several runways
depending on queue length, or customers advance to the first available
cashier out of several cashiers.

Comparing different approaches to efficiency or fairness, by testing
different rules to determine the selected output port of the output switch,
might be part of your goal in simulating the system.

• Entities advance to a specific destination based on their characteristics.
For example, parcels advance to one of several delivery vehicles based on
the locations of the specified recipients.

• Entities use an alternate route in case the preferred route is blocked. For
example, a communications network drops a packet if the route to the
transmitter is blocked and the simulation gathers statistics about dropped
packets.

5-5



5 Designing Paths for Entities

The topics listed below illustrate the use of the Output Switch block.

Topic Features of Example

“Select the First Available Server”
on page 5-6

First port that is not blocked
switching criterion

“Use an Attribute to Select an
Output Port” on page 5-8

Attribute-based switching, where
the attribute value is random

“Model a Packet Switch” on page
5-17

Attribute-based switching in
conjunction with a Path Combiner
block

“Queue Selection Using a Switch”
online

Switching according to a
computation that occurs upon
entity arrivals

To learn about design considerations when you switch according to an input
signal, see “Use Signals To Route Entities” in the SimEvents user guide
documentation. To learn about all supported switching criteria, see the online
reference page for the Output Switch block.

Select the First Available Server
In this example, entities arriving at the Output Switch block depart through
the first entity output port that is not blocked, as long as at least one entity
output port is not blocked. An everyday example of this approach is a single
queue of people waiting for service by one of several bank tellers, cashiers,
call center representatives, etc. Each person in the queue wants to advance
as soon as possible to the first available service provider without preferring
one over another.

You can implement this approach by setting the Switching criterion
parameter in the Output Switch block to First port that is not blocked.

5-6



Select Departure Path Using Output Switch

This deterministic model creates one entity every second and attempts to
advance the entity to one of two servers. The two servers have different
service times, both greater than 1 second. The server with the longer service
time becomes available less frequently and has a smaller throughput. The
FIFO Queue block stores entities while both servers are busy. After any
server becomes available, an entity in the queue advances to the Output
Switch, which outputs that entity to that server.

The Output Switch block also outputs a signal containing the index of the
entity output port through which the most recent entity departure occurred.
The Signal Scope block plots the values of this signal. You can see from the
plot that, compared to the first server, the second server processes more
entities because its service time is shorter.

5-7



5 Designing Paths for Entities

Use an Attribute to Select an Output Port
Consider the situation in which parcels are sorted among several delivery
vehicles based on the locations of the specified recipients. If each parcel is an
entity, then you can attach data to each entity to indicate the location of its
recipient. To implement the sorting, set the Switching criterion parameter
in the Output Switch block to From attribute.

The example below illustrates the sorting process (but not the delivery process
itself), partitioning the delivery area into three geographic zones. An entity
generator represents sources of parcels addressed to one of the zones. After
being marked with a randomly chosen zone 1, 2, or 3 via the Set Attribute
block, the parcels advance to the queue to wait for sorting. The Single Server
block models the small delay incurred in the sorting process and sends each
parcel through the Output Switch block to one of three entity output ports.
From there, the example merely counts the sorted entities destined for each
zone, but your own simulation might do something interesting with the
outputs from the switch.

5-8



Select Departure Path Using Output Switch

5-9



5 Designing Paths for Entities

Select Arrival Path Using Input Switch

In this section...

“Role of the Input Switch” on page 5-10

“Round-Robin Approach to Choosing Inputs” on page 5-10

Role of the Input Switch
The block in the Routing library chooses among a number of entity input
ports. This block selects exactly one entity input port for potential arrivals
and makes all other entity input ports unavailable. The selected entity input
port can change during the simulation. You have several options for criteria
that the block uses for selecting an entity input port.

A typical scenario in which you might use an input switch is when multiple
sources of entities feed into a single queue, where the sequencing follows
specific rules. For example, users of terminals in a time-shared computer
submit jobs to a queue that feeds into the central processing unit, where an
algorithm regulates access to the queue so as to prevent unfair domination
by any one user.

Round-Robin Approach to Choosing Inputs
In a round-robin approach, an input switch cycles through the entity input
ports in sequence. After the last entity input port, the next selection is the
first entity input port. The switch selects the next entity input port after each
entity departure. When the switch selects an entity input port, it makes the
other entity input ports unavailable, regardless of how long it takes for an
entity to arrive at the selected port.

You can implement a round-robin approach by setting the Switching
criterion parameter in the Input Switch block to Round robin.

5-10



Select Arrival Path Using Input Switch

Consider the following example, in which three sets of entities attempt to
arrive at an Input Switch block with the round-robin switching criterion.

The three Set Attribute blocks assign a Type attribute to each entity, where
the attribute value depends on which entity generator created the entity.
FIFO Queue blocks store entities that cannot enter the Input Switch block
yet because either

• The Input Switch is waiting to receive an entity at a different entity input
port, according to the round-robin switching criterion.

• The Single Server block is busy serving an entity, so its entity input port is
unavailable.

5-11



5 Designing Paths for Entities

The Attribute Scope block creates a a stem plot of the Type attribute values
over time. Because the Type attribute identifies the source of each entity
that arrives at the scope, you can see the effect of the round-robin switching
criterion. In particular, the heights of the stems in the plot cycle among the
values 1, 2, and 3.

5-12



Combine Entity Paths

Combine Entity Paths

In this section...

“Role of the Path Combiner” on page 5-13

“Sequence Simultaneous Pending Arrivals” on page 5-14

“Path Combiner Versus Input Switch” on page 5-16

Role of the Path Combiner
You can merge multiple paths into a single path using the Path Combiner
block. Merging entity paths does not change the entities themselves, just as
merging lanes on a road does not change the vehicles that travel on it. In
particular, the Path Combiner block does not create aggregates or batches.

Here are some scenarios in which you might combine entity paths:

• Attaching different data: Multiple entity generator blocks create
entities having different values for a particular attribute. The entities
then follow a merged path but might be treated differently later based on
their individual attribute values.

• Merging queues: Multiple queues merge into a single queue. (You
might also use an Input Switch block for this, depending on the desired
sequencing of entities in the single queue.)

5-13



5 Designing Paths for Entities

• Connecting a feedback path: A feedback path enters the same queue
as an ordinary path.

Sequence Simultaneous Pending Arrivals
The Path Combiner block does not experience any collisions, even if multiple
entities attempt to arrive at the same time. The categories of behavior are as
follows:

• If the entity output port is not blocked when the entities attempt to arrive,
then the sequence of arrivals depends on the sequence of departure events
from blocks that precede the Path Combiner block. For example, the section
“Connect Multiple Queues to the Output Switch” on page 5-21 describes a
dependence on generation event priority values in the “No blockage” case.

Even if the departure time is the same for multiple entities, the sequence
might affect the system’s behavior. For example, if the entities advance to
a queue, the departure sequence determines their positions in the queue.

• If pending entities are waiting to advance to the Path Combiner block
when its entity output port changes from blocked to unblocked, then the
entity input ports are notified of the change sequentially. The change
from blocked to unblocked means that an entity can advance to the Path
Combiner block.

5-14



Combine Entity Paths

If at least two entities are waiting to advance to the Path Combiner block
via distinct entity input ports, then the notification sequence is important
because the first port to be notified of the change is the first to advance
an entity to the Path Combiner block. The Input port precedence
parameter determines which of the block’s entity input ports is first in
the notification sequence. For the list of options, see the online reference
page for the Path Combiner block.

Significance of Input Port Precedence
Consider the sequence of blocks in the figure below, in which a Path Combiner
block merges three small queues into a single large queue.

Suppose the server is busy serving an entity, the single large queue (FIFO
Queue4) is full, and each of the three small queues is nonempty. In this
situation, the Path Combiner block’s entity output port is blocked. When the
entity in the server departs, an entity from the large queue advances to the
server. The large queue is no longer full, so its entity input port becomes
available. As a result, the Path Combiner block’s entity output port changes
from blocked to unblocked. The Path Combiner block uses the Input port
precedence parameter to determine the sequence by which to notify entity
input ports of the change. The sequence of notifications determines which of
the three small queues is the first to advance an entity to the large queue
via the Path Combiner block.

The Input port precedence parameter is relevant only when the entity
output port changes from blocked to unblocked; the parameter is irrelevant in
other situations. For example, if the large queue has infinite capacity, or if

5-15



5 Designing Paths for Entities

at most one of the three small queues is nonempty at any given time during
the entire simulation, then all settings for the Input port precedence
produce the same behavior.

Path Combiner Versus Input Switch
The Input Switch block, described in “Select Arrival Path Using Input Switch”
on page 5-10, has multiple entity input ports and one entity output ports. The
same is true for the Path Combiner block. These two blocks differ in that

• The Path Combiner block’s acceptance of an entity arrival does not depend
on which port the entity arrives at. By contrast, the Input Switch block
accepts only those entities that arrive at the block’s selected entity input
port.

• The Path Combiner block’s Input port precedence parameter is relevant
only in the specific situation described in “Input Port Precedence” online.
By contrast, the Input Switch block’s Switching criterion parameter
governs the block’s behavior throughout the simulation.

When deciding whether to use a Path Combiner or Input Switch block in your
model, consider how you want the simulation to behave when one source of
entities is dormant for a long time but another source of entities is not. If
you want the routing block to wait until an entity finally departs from the
dormant source, then an Input Switch block would be more appropriate. If
you want the routing block to accept arrivals from other entity sources that
are not dormant, then a Path Combiner block would be more appropriate.

5-16



Model a Packet Switch

Model a Packet Switch

In this section...

“Overview” on page 5-17

“Generate Packets” on page 5-18

“Store Packets in Input Buffers” on page 5-20

“Rout Packets to Their Destinations” on page 5-21

“Connect Multiple Queues to the Output Switch” on page 5-21

“Model the Channels” on page 5-22

Overview
A packet switch is a component of a communication network that connects
several sources of data packets with several destinations. The switch directs
each packet to the correct destination, processing packets as they arrive. The
switch must be able to manage bottleneck situations in which several data
packets have the same arrival time and the same destination. Packet switches
can use a variety of architectures and algorithms. This section describes how
to construct one particular packet switch model.

In this example, the goal is to construct a switch that:

• Connects three data sources to three destinations

• Holds arriving packets in a buffer (that is, a queue) for each of the data
sources

• Randomly resolves contention if two or more simultaneous packets at the
head of their respective queues share the same intended destination, with
no bias to any particular source of packets

The example accommodates variable-length packets and assumes that
packets from each data source have exponential interarrival times.

5-17



5 Designing Paths for Entities

The next figure shows an overview of the block diagram.

Generate Packets
The packet switch example models each packet as an entity. The Time-Based
Entity Generator block creates entities. To implement exponentially
distributed intergeneration times between successive entities from each
source, the block has its Distribution parameter set to Exponential.

Attached to each entity are these pieces of data, stored in attributes:

• The source of the packet, an integer between 1 and 3

• The destination of the packet, a random integer between 1 and 3

• The length of the packet, a random integer between 6 and 10

5-18



Model a Packet Switch

Note The entity does not actually carry a payload. This example models the
transmission of data at a level of abstraction that includes timing and routing
behaviors but is not concerned with the specific user data in each packet.

Copies of the Event-Based Random Number block produce the random
destination and length data. The Set Attribute block attaches all the data to
each entity. The Set Attribute block is configured so that the destination
and length come from input signals, while the source number comes from a
constant in the dialog box.

The packet generation processes for the different sources differ only in the
initial seeds for the random number generators and the values for the source
attribute.

5-19



5 Designing Paths for Entities

Store Packets in Input Buffers
The packet switch example uses one FIFO Queue block as a buffer following
each data source’s Set Attribute block.

The queue uses a FIFO queuing discipline, which does not take into account
the destination of each packet. Note that such a model can suffer from
“head-of-queue blocking,” which occurs when a packet not at the head of the
queue is forced to wait even when its destination is available, just because the
packet at the head of the queue is aiming for an unavailable destination.

5-20



Model a Packet Switch

Rout Packets to Their Destinations
A core block in the packet switch example is the Output Switch block. This
block sorts arriving entities so that they depart at the appropriate entity
output port based on the entities’ Destination attribute.

This part of the example is similar to the model shown in “Use an Attribute to
Select an Output Port” on page 5-8.

Connect Multiple Queues to the Output Switch
The packet switch model must enable entities to advance from three queues
to the single entity input port of the Output Switch block. Candidate blocks
are Input Switch and Path Combiner. The Path Combiner block is more
appropriate because it processes entities as they arrive from any of the entity
input ports, whereas the Input Switch block would restrict arrivals to a
specific selected entity input port.

5-21



5 Designing Paths for Entities

Contention among packets can occur from:

• No blockage: Multiple packets from different sources with the same
intended destination arrive simultaneously at an empty queue and
immediately attempt to arrive at the path combiner.

Although the arrivals occur at the same simulation time value, the
processing sequence depends on:

- The priorities of the entity generation events. In this example, all
Time-Based Entity Generator blocks share the same Generation event
priority parameter value.

- The Execution order parameter in the model’s Configuration
Parameters dialog box. In this example, the parameter is set to
Randomized.

As a result, when two packets are generated simultaneously, the sequence
of generation events in this example is random.

• End of blockage: Multiple packets with the same intended destination
are at the head of their respective queues precisely when the Path
Combiner block’s entity output port changes from blocked to unblocked.

For example, suppose all of the queues have leading packets destined
for the first server, which is busy serving an earlier packet. The Path
Combiner block’s entity output port is blocked. When the server completes
service on the earlier packet, the Path Combiner block’s entity output port
becomes unblocked. At that moment, the Path Combiner block notifies
its entity input ports of the status change, in a sequence determined by
the Input port precedence parameter. In this example, the parameter
is set to Equiprobable. As a result, when packets waiting at the head
of their queues have the same intended destination that changes from
unavailable to available, the sequence in which these packets are selected
for advancement is random.

Model the Channels
The packet switch example does not model the channel in detail. The
channel’s key purpose is to process one packet at a time, for a duration that
depends on the length of the packet. During processing, other packets bound
for the same destination must wait, which introduces resource contention
into the simulation.

5-22



Model a Packet Switch

Each channel is modeled as a Single Server block that delays each entity by
an amount of time stored in the entity’s Length attribute. Each destination
is modeled as an Entity Sink block.

5-23



5 Designing Paths for Entities

5-24



6

Selected Bibliography

[1] Banks, Jerry, John Carlson, and Barry Nelson. Discrete-Event System
Simulation, Second Ed. Upper Saddle River, N.J.: Prentice-Hall, 1996.

[2] Cassandras, Christos G. Discrete Event Systems: Modeling and
Performance Analysis. Homewood, Illinois: Irwin and Aksen Associates, 1993.

[3] Cassandras, Christos G., and Stéphane Lafortune. Introduction to Discrete
Event Systems. Boston: Kluwer Academic Publishers, 1999.

[4] Fishman, George S. Discrete-Event Simulation: Modeling, Programming,
and Analysis. New York: Springer-Verlag, 2001.

[5] Gordon, Geoffery. System Simulation, Second Ed. Englewood Cliffs, N.J.:
Prentice-Hall, 1978.

[6] Kleinrock, Leonard. Queueing Systems, Volume I: Theory. New York:
Wiley, 1975.

[7] Law, Averill M., and W. David Kelton. Simulation Modeling and Analysis,
3rd Ed. New York: McGraw-Hill, 1999.

[8] Moler, C. “Floating points: IEEE Standard unifies arithmetic model,”
Cleve’s Corner. The MathWorks, Inc., 1996. You can find this article at
http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf

[9] Watkins, Kevin. Discrete Event Simulation in C. London: McGraw-Hill,
1993.

[10] Zeigler, Bernard P., Herbert Praehofer, and Tag Gon Kim. Theory
of Modeling and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems. Second Ed. San Diego: Academic Press, 2000.

http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf


6 Selected Bibliography

6-2



Index

IndexA
attributes of entities

definition 3-2
routing 5-8

available entity ports 2-44
average waiting time signal 2-23

B
blockage of entity output port

head-of-queue 5-20

C
channel, modeled as server 5-22
combining entity paths 5-13
connection lines 1-12

D
D/D/1 queuing systems 2-2
debugger

state inspection example 2-17
delays

flight controller 2-29
discrete-event simulation 1-3
dynamic voltage scaling demo 1-13

E
entities

creating 3-2
definition 1-7
graphical depiction 2-44
intergeneration distribution 3-4

example 3-10
intergeneration signal 3-8
simultaneous arrivals 5-14

entity collisions 5-14
entity connection lines 1-12
entity data

definition 3-2
routing 5-8

entity generation
intergeneration distribution 3-4
intergeneration signal 3-8

entity interpretations 1-7
entity paths

activity along 2-44
definition 5-2
first available 5-6
graphical depiction 1-12
merging 5-13
round robin 5-10

entity ports 1-11
entity sources 3-2
event-based simulation

compared to time-based simulation 1-3
event-based vs. time-based dynamics 2-43
events 1-8
exponential distribution 3-4

F
feedback entity paths 5-14

H
head-of-queue blocking 5-20

I
infinite-capacity servers 4-5
input port precedence 5-15
input ports

for entities 1-11
for signals 1-12

Input Switch block
compared with Path Combiner block 5-16
usage 5-10

intergeneration times
distribution 3-4

Index-1



Index

random 3-10
signal 3-8
step function example 3-11

L
libraries 2-3
logical queues

definition 4-3
example 4-10

M
mean waiting time signal 2-23
merging entity paths 5-13

O
output ports

for entities 1-11
for signals 1-12

Output Switch block
attribute-based routing 5-8
first available 5-6
usage 5-5

P
packet switching example 5-17
Path Combiner block

compared with Input Switch block 5-16

Q
queue-server pairs 4-3
queues 4-2
queuing systems

combinations of blocks 4-6
D/D/1 2-2
series vs. parallel 4-6
two queues 4-8

R
references 6-1
repeatability 3-7
round robin 5-10

S
seed of random number generator 3-7
servers 4-5
service times

definition 4-4
from signal 4-10
random 4-11

signal ports 1-12
SimEvents® libraries 2-3
simeventsconfig function 2-13
simulation parameters

changing 2-13
simultaneous events 1-8

merging entity paths 5-14
sources of entities 3-2
statistical signals 2-23
switching entity paths

at input 5-10
at output 5-5
based on attribute 5-8
based on availability 5-6
packet switch example 5-21
round robin 5-10

T
Time-Based Entity Generator block 3-3
time-based vs. event-based dynamics 2-43

U
unavailable entity ports 2-44
uniform distribution 3-4
utilization signal 2-23

Index-2



Index

W
warnings during simulation 2-13

Index-3


	toc
	Introduction
	SimEvents Product Description
	Key Features

	Discrete-Event Simulation in Simulink Models
	Related Products
	Information About Related Products
	Limitations on Usage with Related Products
	Code Generation
	Simulation Modes
	Model Reference
	Function-Call Split Block


	What Is an Entity?
	What Is an Event?
	Overview of Events
	Relationships Among Events
	Viewing Events

	Run a Sample Model
	Overview of the Model
	Opening the Model
	Examining Entities and Signals in the Model
	Entity Ports and Connections
	Signals and Signal Ports

	Key Components of the Model
	Appearance of Entities

	Running the Simulation


	Building Simple Models with SimEvents Software
	Build a Discrete-Event Model
	Overview
	Open a Model and Libraries
	Open a New Model Window
	Open SimEvents Libraries
	Open Simulink Libraries

	Move Blocks into the Model Window
	Configure Blocks
	View Parameter Values
	Change Parameter Values

	Connect Blocks
	Run the Simulation
	Resolve Solver Warnings
	Results of the Simulation

	Insert Blocks
	Build a Model Using Model Construction Commands

	Explore Simulations Using the Debugger and Plots
	Explore the D/D/1 System Using the SimEvents Debugger
	Start the Debugger
	Run the Simulation
	Query the Server Block
	End the Simulation
	For Further Information

	Explore the D/D/1 System Using Plots
	Enable the Queue-Length Signal
	Plot the Queue-Length Signal
	Simulate with Different Intergeneration Times
	View Waiting Times and Utilization
	Observations from Plots

	Information About Race Conditions and Random Times

	Build a Hybrid Model
	Overview
	Lesson 1: Run the Time-Based Model
	Lesson 2: Explore the Time-Based Model
	Desired Relative Slip Block
	Controller Subsystem
	Brake System Dynamics Subsystem
	Sensor Relative Slip Subsystem

	Lesson 3: Add Event-Based Behavior
	How the Network Delay Subsystem Works
	Add the Network Delay Subsystem Block
	Add the Network Delay Subsystem Contents
	Complete the Hybrid Model

	Lesson 4: Run the Hybrid Model
	Change the Network Performance

	Event-Based and Time-Based Dynamics in the Simulation

	Key Concepts in SimEvents Software
	Meaning of Entities in Different Applications
	Entity Ports and Paths
	Data and Signals


	Create Entities Using Intergeneration Times
	Role of Entities in SimEvents Models
	Create Entities in a Model
	Vary the Interpretation of Entities
	Data and Entities
	Introduction to the Time-Based Entity Generator

	Specify Intergeneration Times for Entities
	Definition of Intergeneration Time
	Approaches for Determining Intergeneration Time
	Comparison of Approaches

	How to Specify a Distribution
	Specify a Constant, Uniform, or Exponential Distribution
	Probability density functions and entity generation times
	Interpreting Probability Density Function
	Role of initial seed for uniform and exponential distributions
	Specify Other Probability Distributions

	How to Specify Intergeneration Times from a Signal
	For more information
	Using Random Intergeneration Times in a Queuing System
	Use an Arbitrary Discrete Distribution as Intergeneration Time
	Use a Step Function as Intergeneration Time


	Basic Queues and Servers
	Queues in SimEvents Models
	Behavior and Features of Queues
	Physical Queues and Logical Queues
	Access Queue Blocks

	Servers in SimEvents Models
	Behavior and Features of Servers
	What Servers Represent
	Servers Inserted for Modeling Purposes

	Access Server Blocks

	Model Basic Queueing Systems
	Constructs Involving Queues and Servers
	Serial Queue-Server Pairs
	Parallel Queue-Server Pairs as Alternatives
	Parallel Queue-Server Pairs in Multicasting
	Serial Connection of Queues
	Parallel Connection of Queues

	Example of a Logical Queue
	Vary the Service Time of a Server
	Random Service Times in a Queuing System



	Designing Paths for Entities
	Role of Paths in SimEvents Models
	Definition of Entity Paths
	Implications of Entity Paths
	Overview of Routing Library for Designing Paths

	Select Departure Path Using Output Switch
	Role of the Output Switch
	Sample Use Cases
	Select the First Available Server
	Use an Attribute to Select an Output Port

	Select Arrival Path Using Input Switch
	Role of the Input Switch
	Round-Robin Approach to Choosing Inputs

	Combine Entity Paths
	Role of the Path Combiner
	Sequence Simultaneous Pending Arrivals
	Significance of Input Port Precedence

	Path Combiner Versus Input Switch

	Model a Packet Switch
	Overview
	Generate Packets
	Store Packets in Input Buffers
	Rout Packets to Their Destinations
	Connect Multiple Queues to the Output Switch
	Model the Channels


	Selected Bibliography
	Index


